Однофазный асинхронный двигатель малой мощности
Однофазный асинхронный электродвигатель
Дмитрий Левкин
- Однофазный электродвигатель с пусковой обмоткой
- Конструкция однофазного асинхронного двигателя
- Принцип работы однофазного двигателя
- Пуск однофазного двигателя
- Подключение однофазного двигателя
- Однофазный электродвигатель с экранированными полюсами
- Электродвигатель с асимметричным магнитопроводом статора
Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой
Основными компонентами любого электродвигателя являются ротор и статор. Ротор - вращающаяся часть электродвигателя, статор - неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.
Основные части однофазного двигателя: ротор и статор
Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.
Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.
Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой "беличьей клеткой". Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.
Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга
Принцип работы однофазного асинхронного двигателя
Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.
Проанализируем случай с двумя обмотками имеющими по оному витку
Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Ф mах до -Фmах.
Остановить
Пульсирующее магнитное поле
Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.
Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:
,
- где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
- nобр – частота вращения магнитного поля в обратном направлении, об/мин,
- f1 – частота тока статора, Гц,
- p – количество пар полюсов,
- n1 – скорость вращения магнитного потока, об/мин
Остановить
Разложение пульсирующего магнитного потока на два вращающихся
Действие пульсирующего поля на вращающийся ротор
Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.
Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр - в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:
,
- где sпр – скольжение ротора относительно прямого магнитного потока,
- n2 – частота вращения ротора, об/мин,
- s – скольжение асинхронного двигателя
Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока
Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр
,
- где sобр – скольжение ротора относительно обратного магнитного потока
Запустить
Остановить
Вращающееся магнитное поле пронизывающее ротор
Ток индуцируемый в роторе переменным магнитным полем
Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:
,
- где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц
,
- где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц
Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.
Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,
скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц
Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент
,
- где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
- сM — постоянный коэффициент, определяемый конструкцией двигателя
Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:
,
- где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м
Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,
,
Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.
Тормозящее действие обратного поля
При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.
,
- где r2 - активное сопротивление стержней ротора, Ом,
- x2обр - реактивное сопротивление стержней ротора, Ом.
Если учесть, что коэффициент мощности невелик, то станет, ясно, почему М обр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.
С помощью одной фазы нельзя запустить ротор
Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором
Действие пульсирующего поля на неподвижный ротор
При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .
Пуск однофазного двигателя. Как создать начальное вращение?
Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].
После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.
Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.
Подключение однофазного двигателя
С пусковым сопротивлением
Двигатель с расщепленной фазой - однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].
Однофазный асинхронный двигатель с пусковым сопротивлением - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.
Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки
Разное сопротивление и индуктивность обмоток
Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.
Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.
Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.
С конденсаторным пуском
Двигатель с конденсаторным пуском - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.
Ёмкостной сдвиг фаз с пусковым конденсатором
Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.
Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.
Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются - конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.
Двигатель с экранированными полюсами - двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.
Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами - короткозамкнутый в виде "беличьей" клетки.
При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф', а другая Ф" - по экранированной части полюса. Поток Ф" наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток I k отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф", создавая результирующий поток в экранированной части полюса Фэ=Ф"+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.
Пространственный и временной углы сдвига между потоками Фэ и Ф' создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф'.
Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.
Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор - короткозамкнутый типа "беличья клетка".
Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.
Основные параметры электродвигателя
Общие параметры для всех электродвигателей
- Момент электродвигателя
- Мощность электродвигателя
- Коэффициент полезного действия
- Номинальная частота вращения
- Момент инерции ротора
- Номинальное напряжение
- Электрическая постоянная времени
- М. М.Кацман. Электрические машины и электропривод автоматических устройств: Учебник для электротехнических специальностей техникумов.- М.: Высш. шк., 1987.
- ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
Библиографический список
Однофазные и двухфазные асинхронные двигатели
Общие сведения. Однофазные асинхронные двигатели питаются от сети однофазного тока, но обмотка статора может быть при этом однофазной, двухфазной и даже трехфазной. Устройство ротора однофазного двигателя такое же, как у трехфазного. Двигатели, выпускаемые промышленностью, имеют малую мощность: от 1 Вт (серия УАД) до 400 Вт (серия ABE) и даже 600 Вт (серия АОЛБ). Однофазные асинхронные двигатели применяются в схемах автоматического управления, в различного рода бытовых устройствах, в приводах механизмов малой мощности.
Образование вращающегося магнитного поля в однофазных двигателях. Если статор имеет лишь одну обмотку ОС, питаемую от сети синусоидальным током (рис. 3.43), тогда МДС Fc этой обмотки создает пульсирующий в пространстве магнитный поток Ф, который наводит переменную ЭДС и ток в короткозамкнутой обмотке ротора. МДС статора Fc и ротора Fp будут равны и противоположны по направлению, результирующая МДС равна нулю и, следовательно, пусковой момент равен нулю, ротор не вращается. Однако если ротор при помощи какой-либо посторонней силы привести во вращение, то в дальнейшем он будет вращаться, хотя эта сила будет снята. Это явление можно объяснить, если представить пульсирующее магнитное поле в виде суммы двух вращающихся в противоположных направлениях магнитных полей (рис. 3.44).
Одно из полей обозначим Ф+, другое Ф—. Амплитудные значения вращающихся полей одинаковы и равны половине амплитудного значения пульсирующего поля.
Механическая характеристика. Рассматривая вращающиеся поля независимо, можно установить, что одно поле, взаимодействуя с ротором, создает вращающий момент одного направления М+, а другое поле — момент противоположного направления М-. Тогда результирующий момент М = М+ — М-. На рис. 3.45 показаны механические характеристики п(М+) и п(М-).
Механическая характеристика однофазного двигателя п(М) находится графическим сложением этих характеристик.
Пуск в ход однофазного асинхронного двигателя с пусковой обмоткой. Из механической характеристики однофазного двигателя видно, что пусковой момент равен нулю. Для того чтобы однофазный двигатель пустить в ход, не прибегая к сторонней силе, на статоре размещают вторую обмотку, сдвинутую в пространстве на 90° относительно первой (рис. 3.46). В цепь второй обмотки включен конденсатор С, создающий в цепи этой обмотки сдвиг тока по фазе. Первую обмотку назовем рабочей РО, вторую — пусковой ПО. Токи РО и ПО образуют вращающееся магнитное поле, создающее при взаимодействии с ротором вращающий момент, приводящий ротор двигателя во вращение. После разгона двигателя пусковая обмотка отключается от сети.
Однофазный асинхронный двигатель с экранированными (расщепленными) полюсами. Статор 1 такого двигателя имеет явно выраженные полюсы, на которых расположена рабочая обмотка РО. Каждый полюс как бы расщеплен на две неравные части, одна из которых узкая, а другая — широкая. На узкой части помещен короткозамкнутый виток wк (рис. 3.47, а). Ротор двигателя короткозамкнутый, обычной конструкции. Пульсирующий магнитный поток Ф΄1, созданный переменной МДС рабочей обмотки статора, пронизывает короткозамкнутый виток и наводит в нем ЭДС Ек, которая вызывает появление тока в витке и магнитного потока Фк(рис. 3.47,6). Этот поток сдвинут по фазе относительно потока рабочей обмоткиФ˝1, складываясь с ним создает в зоне короткозамкнутого витка результирующий магнитный поток Фрез, сдвинутый по фазе относительно потока Ф1 . В результате под полюсом есть два магнитных потока Ф1 и Фрез, разнесенные в пространстве и сдвинутые по фазе (во времени), что обеспечивает получение вращающегося поля.
Технические данные подобных двигателей хуже, чем трехфазных ( [ η = 0,1÷0,4; cosφ = 0,5÷0,6, Мп = (0,1÷1) Мном ), поэтому они выпускаются на мощности до нескольких десятков ватт.
Двухфазный асинхронный двигатель с постоянно включенным конденсатором. Схема двигателя приведена на рис. 3.48.
Конденсатор Ср, создавая сдвиг фаз в цепи одной из обмоток статора, позволяет получить вращающееся магнитное поле. Если вращающий момент такого двигателя недостаточен для пуска двигателя под нагрузкой, то параллельно конденсатору Ср подключается пусковой конденсатор Сп. После разгона двигателя конденсатор Сп автоматически отключается центробежным выключателем Q.
Двухфазный асинхронный двигатель с полым немагнитным ротором. Такой двигатель находит применение при необходимости регулирования частоты вращения в широких пределах. Ротор двигателя 1 (рис. 3.49) изготавливают в виде полого цилиндра из немагнитного материала (например, сплава алюминия), вращающегося между внешней 2 и внутренней 3 частями статора. Обмотки статора размещаются либо на внешней, либо на внутренней части. Под влиянием вращающегося поля в теле ротора создаются вихревые токи, и их взаимодействие с вращающимся полем создает вращающий момент. Подобные двигатели обладают большим быстродействием, так как полый цилиндр имеет небольшой момент инерции.
Причины, следствия и методы защиты
Для правильной работы любого 3-фазного асинхронного двигателя он должен быть подключен к 3-фазному источнику переменного тока (переменного тока) с номинальным напряжением и нагрузкой. После запуска эти трехфазные двигатели будут продолжать работать, даже если одна из трехфазных линий питания будет отключена. Потеря тока через одну из этих фаз питания описывается как однофазное.
Корабль оснащен сотнями двигателей, которые отвечают за работу различных насосов, механизмов и систем. К критически важным механизмам, таким как рулевой механизм, главный двигатель, генератор, котел и т. д., подключены трехфазные двигатели, которые приводят в действие ту или иную основную или вспомогательную систему.
Связанные материалы: Электрическая силовая установка для судов
Трехфазный двигатель на 440 В, как правило, представляет собой стандартную раму с короткозамкнутым ротором индукционного типа, предназначенную для переменного тока 440 В, 3 фазы, 60 Гц. Только двигатели малой мощности 0,4 кВт или меньше, в основном используемые для освещения и других маломощных систем, представляют собой однофазные двигатели с рабочим напряжением 220 В 60 Гц.
Связанные материалы: Понимание важности морских навигационных огней
Причины однофазности
Однофазное замыкание — это электрическая неисправность, связанная с источником питания, в случае асинхронного двигателя. Возникает при размыкании одной из 3-х фазных цепей в трехфазном двигателе; следовательно, в остальных цепях протекает избыточный ток. Это состояние однофазного соединения обычно возникает, когда:-
– Перегорает один или несколько из трех резервных предохранителей (или плавится провод плавкого предохранителя, если предохранитель проводного типа)
– В цепи двигателя есть контакторы, которые подают ток . Один из контакторов разомкнут.
– Неправильная или неправильная настройка любого из защитных устройств, предусмотренных на двигателе, также может привести к однофазному включению.
– Повреждены или оборваны контакты реле двигателя
– Обрыв одного из проводов цепи двигателя
– Из-за отказа оборудования системы питания двигатель, соединенный звездой или треугольником
Дополнительная литература: Пусковые панели двигателей на судах: техническое обслуживание и плановые работы
– Перегорание предохранителей фидера или трансформатора предназначен для работы от трехфазного источника питания. Конструкция обоих типов двигателей одинакова, поскольку они оба имеют статор и вращатель. Однофазный двигатель не имеет вращающегося поля, а поворачивается на 180 градусов. Обычно однофазные двигатели не запускаются самостоятельно. Для этого они используют дополнительные средства, такие как отключение пусковой обмотки или конденсатора.
Однофазная проблема трехфазного асинхронного двигателя будет иметь следующие последствия:
— Если двигатель находится в остановленном состоянии, его нельзя запустить, поскольку однофазный двигатель не может запускаться самостоятельно (как описано выше) и также благодаря системе безопасности, предусмотренной в 3-фазном двигателе для защиты от перегрева
– Если во время работы двигателя произойдет однофазное замыкание, он продолжит работу (если не предусмотрена дополнительная система защитного отключения) из-за крутящий момент, создаваемый оставшимися двумя фазами, который создается в соответствии с требованием нагрузки
– Поскольку оставшиеся две фазы выполняют дополнительную работу одной основной фазы, они будут перегреваться, что может привести к критическому повреждению обмоток. значение тока в оставшихся двух фазах
Связанные материалы: 10 способов достижения энергоэффективности в электрической системе судна
– Однофазное подключение снижает скорость двигателя, и его частота вращения будет колебаться
– Шум и вибрация двигателя будут ненормальными. Это результат неравномерного крутящего момента оставшихся двух фаз. Если двигатель выбран в резервный режим с проблемой однофазного включения – Он не запустится, что приведет к выходу из строя соответствующей системы
– Если проблема не будет устранена, а двигатель будет продолжать работать, обмотки расплавятся из-за перегрева и могут привести к короткому замыканию. -замыкание или заземление
Связанное Чтение: Как найти замыкание на землю на борту корабля?
— В таком состоянии, если экипаж корабля соприкоснется с двигателем, он получит удар током, который может быть даже смертельным. Перегрев обмотки происходит в первую очередь из-за протекания тока обратной последовательности.
– Это может вызвать перегрузку генератора, т. е. вспомогательного двигателя и его генератора
Как защитить двигатель от повреждения из-за однофазного питания?
Такое состояние требует, чтобы двигатель был снабжен защитой, которая отключит его от системы до того, как двигатель будет необратимо поврежден.
Все двигатели мощностью более 500 кВт должны быть снабжены защитными устройствами или оборудованием для предотвращения любого повреждения из-за однофазного включения.
Изложенное выше правило не распространяется на двигатели рулевого привода, установленные на судне. Только при обнаружении одиночной фазы подается сигнал тревоги; однако двигатель не остановится, поскольку непрерывная работа рулевого двигателя необходима для обеспечения безопасности или движения судна, особенно когда судно находится в перегруженных водах или маневрирует.
Связанное чтение: 8 распространенных проблем, встречающихся в системе рулевого управления судов
Наиболее часто используемые защитные устройства для однофазных систем:
1) Устройство электромагнитной перегрузки
В этом устройстве три фазы двигателя оснащены реле перегрузки. Если происходит увеличение значения тока, то это реле срабатывает автоматически и двигатель отключается.
Это устройство работает по принципу электромагнитного эффекта, создаваемого током.
По мере увеличения значения тока электромагнит в катушке также увеличивается, что приводит в действие реле и активирует реле отключения, и двигатель останавливается.
Связанные материалы: Техническое обслуживание электрического реле в электрической цепи судна
В этой системе предусмотрена временная задержка, поскольку при запуске двигателя потребляется много тока, что может привести к отключению двигателя.
2) Термисторы
Кредит: Викимедиа
Термисторы представляют собой небольшие тепловые устройства, которые используются вместе с электромагнитным реле перегрузки. Термисторы вставлены в три обмотки двигателя. Любое увеличение тока вызовет нагрев обмоток, который обнаруживается термисторами, посылающими сигналы на усилитель.
Связанные материалы: Схема усилителя или операционный усилитель, используемый на корабле
Усилитель подключен к электромагнитному реле. Как только от терморезистора поступает сигнал о перегреве, этот усилитель увеличивает значение тока в катушке электромагнитного реле, которое срабатывает на отключение и двигатель останавливается или отключается.
3) Биметаллическая полоса
В этом методе биметаллическая полоса размещается таким образом, чтобы обнаруживать перегрев в цепи. Как только обнаруживается перегрев, эта биметаллическая полоса пытается расшириться из-за использования двух разных металлов и из-за того, что они имеют разный коэффициент расширения. Лента пытается согнуться в сторону металла с высоким коэффициентом расширения и, наконец, замыкает цепь отключения, и двигатель отключается.
4) Стандартная защита от перегрузки пускателя двигателя
Предусмотрена в трехфазном двигателе для обеспечения однофазного состояния. Нагреватели перегрузки предусмотрены во всех фазах, которые обнаруживают любую перегрузку в фазе, и, если нагрузка намного превышает спецификации для двигателя, нагреватели отключают пускатель до того, как обмотка двигателя будет повреждена.
Как определить однофазное замыкание?
Экипаж судна должен знать, перешел ли двигатель в однофазный режим. Трехфазный асинхронный двигатель обычно снабжен устройством обнаружения перегрузки для однофазного обнаружения. Тем не менее, машина может выйти из строя в любой момент, и, как опытный судовой механик, он должен знать, как двигатель обычно звучит, ощущается или работает.
Связанные материалы: 10 Электромонтажные работы, которые должны знать морские инженеры на борту судов
Важно сохранять бдительность при выполнении проверок судового двигателя для выявления следующих проблем, связанных с однофазным питанием:
– Необычный гудящий шум исходящий от двигателя
– Двигатель вибрирует с более высокой частотой, чем обычно
– Запах горячей и горелой меди (изоляция) (узнайте, как проверка изоляции с помощью мегомметра помогает предотвратить несчастный случай)
– Видимый световой дым/дым из корпуса двигателя
Для устранения неполадок и повторного запуска двигателя с однофазного на трехфазный немедленно остановите двигатель и переключитесь на резервный двигатель. Проверьте параметры двигателя, указанные на табличке, прикрепленной к корпусу, и устраните неполадки в двигателе.
Проведите надлежащий визуальный осмотр обмотки двигателя и проверьте целостность цепи заземления и проверку сопротивления . Проверка источника питания двигателя также выполняется для выявления проблемы, если двигатель не диагностирует неисправность.
Дополнительная литература: Как ремонтировать двигатели на судах
Как только проблема обнаружена и устранена, закройте двигатель. Перед подключением двигателя к нагрузке включите органы управления двигателем и выполните пробный пуск двигателя по всем важным параметрам (например, напряжению, току, оборотам в минуту, температуре и т. д.) и сравните их со значениями, указанными на табличке.
Убедитесь, что все размеры соответствуют спецификациям, указанным на паспортной табличке. Когда пробный запуск двигателя на холостом ходу будет удовлетворительным, подключите нагрузку и отслеживайте работу двигателя, чтобы убедиться, что проблема устранена, и теперь двигатель работает эффективно в 3 фазах.
Вы также можете прочитать – Что такое морское электричество и как его производят?
Отказ от ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают взгляды Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания Marine Insight не претендуют на точность и не несут за это никакой ответственности. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих указаний или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.
Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.
Однофазный асинхронный двигатель – конструкция, работа и типы
Однофазные двигатели более предпочтительны, чем трехфазные асинхронные двигатели для бытового и коммерческого применения. Из-за формы утилиты доступно только однофазное питание. Таким образом, в этом типе применения трехфазный асинхронный двигатель не может использоваться.
В следующем посте мы покажем конструкцию и различные типы однофазных асинхронных двигателей с работой и применением.
- По теме: Трехфазный асинхронный двигатель — конструкция, работа, типы и применение
Содержание
Конструкция однофазного асинхронного двигателя
Однофазный асинхронный двигатель аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что он имеет одну фазу с двумя обмотками (вместо одной трехфазной обмотки в 3-фазной схеме). фазные двигатели) установлены на статоре, а ротор с короткозамкнутой обмоткой размещен внутри статора, который свободно вращается с помощью подшипников, установленных на валу двигателя.
Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя.
Подобно трехфазному асинхронному двигателю, однофазный асинхронный двигатель также состоит из двух основных частей;
- Статор
- Ротор
Связанная статья: Машина постоянного тока — конструкция, принцип работы, типы и применение
Статор
В статоре единственная разница заключается в обмотке статора. Обмотка статора представляет собой однофазную обмотку вместо трехфазной обмотки. Сердечник статора такой же, как сердечник трехфазного асинхронного двигателя.
В однофазном асинхронном двигателе в статоре используются две обмотки, за исключением асинхронного двигателя с расщепленными полюсами. Из этих двух обмоток одна обмотка является основной, а вторая - вспомогательной.
Сердечник статора ламинирован для уменьшения потерь на вихревые токи. Однофазное питание подается на обмотку статора (основная обмотка)
Ротор
Ротор однофазного асинхронного двигателя аналогичен ротору асинхронного двигателя с короткозамкнутым ротором. Вместо обмотки ротора используются стержни ротора, а на конце он замыкается концевыми кольцами. Следовательно, он делает полный путь в цепи ротора. Стержни ротора крепятся к концевым кольцам для увеличения механической прочности двигателя.
Пазы ротора скошены под некоторым углом, чтобы избежать магнитной связи. И это также использовалось для того, чтобы двигатель работал плавно и тихо.
На следующем рисунке показаны статор и ротор однофазного асинхронного двигателя.
- Связанный пост: Серводвигатель — типы, конструкция, работа, управление и применение
Работа однофазного асинхронного двигателя
Однофазное питание переменным током подается на обмотку статора (основная обмотка). Переменный ток, протекающий по обмотке статора, создает магнитный поток. Этот поток известен как основной поток.
Теперь предположим, что ротор вращается и находится в магнитном поле, создаваемом обмоткой статора. Согласно закону Фарадея, ток начинает течь в цепи ротора по замкнутому пути. Этот ток известен как ток ротора.
Из-за тока ротора вокруг обмотки ротора возникает поток. Этот поток известен как поток ротора.
Есть два потока; основной поток, который создается статором , а второй - это поток ротора , который создается ротором 9.0018 .
Взаимодействие между основным потоком и потоком ротора, крутящий момент создается в роторе и он начинает вращаться.
Поле статора имеет переменный характер. Скорость поля статора такая же, как синхронная скорость. Синхронная скорость двигателя зависит от числа полюсов и частоты питания.
Может представлять собой два вращающихся поля. Эти поля равны по величине и вращаются в противоположном направлении.
Допустим, Φ м — максимальное поле, наведенное в основной обмотке. Значит, это поле разделено на две равные части, то есть Φ м /2 и Φ м /2.
Из этих двух полей одно поле Φ f вращается против часовой стрелки, а второе поле Φ b вращается по часовой стрелке. Следовательно, результирующее поле равно нулю.
Φ r = Φ f – Φ b
Φ r = 0
3
Когда двигатель запускается, индуцируются два поля, как показано на рисунке выше. Эти два поля имеют одинаковую величину и противоположное направление. Таким образом, результирующий поток равен нулю.
В этом состоянии поле статора не может пересекаться с полем ротора, и результирующий крутящий момент равен нулю. Итак, ротор не может вращаться, но издает гудение.
Теперь представьте, что после поворота на 90˚ оба поля повернуты и направлены в одном направлении. Следовательно, результирующий поток представляет собой сумму обоих полей.
φ R = φ F + φ B
φ R = 0
В этом условии, полученное, адапленное, поля, поля. Теперь оба поля вращаются отдельно, и это носит альтернативный характер.
Итак, оба поля обрезаны цепью ротора и ЭДС, наведенной в проводнике ротора. Из-за этой ЭДС в цепи ротора начинает течь ток, который индуцирует поток ротора.
Благодаря взаимодействию потока статора и потока ротора двигатель продолжает вращаться. T его теория известна как Двойная вращающаяся теория или двойное вращающееся поле теория .
Теперь, из приведенного выше объяснения, мы можем сделать вывод, что однофазный асинхронный двигатель не запускается самостоятельно.
Чтобы сделать этот двигатель самозапускающимся, нам нужен поток статора, вращающийся по своей природе, а не переменный. Это можно сделать различными методами.
- По теме: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение
Однофазные асинхронные двигатели можно классифицировать по методам пуска.
Типы однофазных асинхронных двигателей
Однофазные асинхронные двигатели классифицируются как;
- Асинхронный двигатель с расщепленной фазой
- Асинхронный двигатель с экранированными полюсами
- Асинхронный двигатель с пусковым конденсатором
- Конденсаторный пусковой конденсатор Работающий асинхронный двигатель
- Асинхронный двигатель с постоянными конденсаторами
Асинхронный двигатель с расщепленной фазой
В этом типе двигателя дополнительная обмотка намотана на тот же сердечник статора. Итак, в статоре две обмотки.
Одна обмотка известна как основная обмотка или рабочая обмотка, а вторая обмотка известна как пусковая обмотка или вспомогательная обмотка. Последовательно с вспомогательной обмоткой включен центробежный выключатель.
Вспомогательная обмотка с высоким сопротивлением, а основная обмотка с высокой индуктивностью. Вспомогательная обмотка имеет несколько витков малого диаметра.
Вспомогательная обмотка предназначена для создания разности фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора.
Схема подключения показана на рисунке выше. Ток, протекающий по основной обмотке, равен I M , а ток, протекающий по вспомогательной обмотке, равен I А . Обе обмотки параллельны и питаются напряжением В.
Вспомогательная обмотка имеет высокое активное сопротивление. Так, ток I А почти совпадает по фазе с напряжением питания В.
Основная обмотка имеет сильноиндуктивный характер. Так, ток I М отстает от напряжения питания на большой угол.
Полный поток статора индуцируется результирующим током этих двух обмоток. Как показано на векторной диаграмме, результирующий ток представлен как (I). Это создаст разность фаз между потоками, и результирующий поток создаст вращающееся магнитное поле. И двигатель начинает вращаться.
Вспомогательная обмотка используется только для запуска двигателя. Эта обмотка бесполезна в рабочем состоянии. Когда двигатель достигает 75–80 % синхронной скорости, центробежный выключатель размыкается. Итак, вспомогательная обмотка выведена из цепи. И двигатель работает только на основной обмотке.
Разность фаз, создаваемая этим методом, очень мала. Следовательно, пусковой момент этого двигателя плохой. Таким образом, этот двигатель используется в приложениях с низким пусковым моментом, таких как вентиляторы, воздуходувки, измельчители, насосы и т. д.
- Связанный пост: Шаговый двигатель — типы, конструкция, работа и применение
Асинхронный двигатель с экранированными полюсами
По сравнению с другими типами однофазных асинхронных двигателей, этот двигатель имеет другую конструкцию и принцип работы. Этот тип двигателя не требует дополнительной обмотки.
Этот двигатель имеет явный полюс статора или выступающий полюс, а ротор такой же, как у асинхронного двигателя с короткозамкнутым ротором. Полюса статора сконструированы специально для создания вращающегося магнитного поля.
Полюс этого двигателя разделен на две части; заштрихованная часть и незаштрихованная часть. Его можно создать, разрезав шест на неравные расстояния.
Медное кольцо помещается в малую часть стержня. Это кольцо является высокоиндуктивным кольцом и известно как заштрихованное кольцо или заштрихованная полоса. Часть, в которой проводится стимуляция заштрихованного кольца, известна как заштрихованная часть вехи, а оставшаяся часть - незаштрихованная часть.
Конструкция этого двигателя показана на рисунке ниже.
При прохождении переменного тока через обмотку статора в катушке статора индуцируется переменный поток. Из-за этого потока некоторое количество потока будет связано с заштрихованным кольцом, и ток будет течь через заштрихованное кольцо.
Согласно закону Ленца, ток, проходящий через катушку, имеет противоположный характер, и поток, создаваемый этой катушкой, будет противодействовать основному потоку.
Заштрихованное кольцо представляет собой высокоиндуктивную катушку. Таким образом, он будет противодействовать основному потоку, когда оба потока направлены в одном направлении, и увеличит основной поток, когда оба потока направлены в противоположные стороны.
Таким образом, это создаст разность фаз между основным потоком (поток статора) и потоком ротора. При использовании этого метода разность фаз очень мала. Следовательно, пусковой момент очень мал. Он используется в таких приложениях, как игрушечные двигатели, вентиляторы, воздуходувки, проигрыватели и т. д.
Асинхронный двигатель с пусковым конденсатором
Этот тип двигателя является усовершенствованной версией асинхронного двигателя с расщепленной фазой. Недостатком индукции с расщепленной фазой является низкий крутящий момент. Потому что в этом двигателе создаваемая разность фаз очень мала.
Этот недостаток компенсируется в данном двигателе конденсатором, включенным последовательно со вспомогательной обмоткой. Принципиальная схема этого двигателя показана на рисунке ниже.
В этом двигателе используется конденсатор сухого типа. Это предназначено для использования с переменным током. Но этот конденсатор не используется для непрерывной работы.
В этом методе также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости.
Ток через вспомогательный блок опережает напряжение питания на некоторый угол. Этот угол больше, чем угол, увеличенный в асинхронном двигателе с расщепленной фазой.
Таким образом, пусковой момент этого двигателя очень высок по сравнению с асинхронным двигателем с расщепленной фазой. Пусковой крутящий момент этого двигателя на 300% больше, чем крутящий момент при полной нагрузке.
Благодаря высокому пусковому крутящему моменту этот двигатель используется там, где требуется высокий пусковой крутящий момент, например, в токарных станках, компрессорах, сверлильных станках и т. д.
- По теме: КПД двигателя и как его повысить?
Конденсатор Пусковой конденсатор Работающий асинхронный двигатель
В этом типе двигателя два конденсатора соединены параллельно последовательно во вспомогательной обмотке. Из этих двух конденсаторов один конденсатор используется только для запуска (пусковой конденсатор), а другой постоянно подключен к двигателю (рабочий конденсатор).
Принципиальная схема этого рисунка показана на рисунке ниже.
Пусковой конденсатор имеет высокое значение емкости, а рабочий конденсатор имеет низкое значение емкости. Пусковой конденсатор соединен последовательно с центробежным выключателем, который размыкается, когда скорость двигателя составляет 70 % от синхронной скорости.
Во время работы рабочая и вспомогательная обмотки соединены с двигателем. Пусковой крутящий момент и эффективность этого двигателя очень высоки.
Таким образом, его можно использовать в приложениях, где требуется высокий пусковой крутящий момент, таких как холодильник, кондиционер, потолочный вентилятор, компрессор и т. д.
- Связанный пост: Прямой онлайн-стартер — схема подключения стартера DOL для двигателей
Асинхронный двигатель с постоянными конденсаторами
Конденсатор малой емкости постоянно подключен к вспомогательной обмотке. Здесь конденсатор имеет малую емкость.
Конденсатор используется для увеличения пускового момента, но он мал по сравнению с асинхронным двигателем с пусковым конденсатором.
Принципиальная схема и векторная диаграмма этого двигателя показаны на рисунке ниже.
Коэффициент мощности и КПД этого двигателя очень высоки, а также он имеет высокий пусковой крутящий момент, который составляет 80% крутящего момента при полной нагрузке.
Этот тип двигателя используется в таких приложениях, как вытяжной вентилятор, воздуходувка, нагреватель и т. д. Типы пускателей двигателей и методы пуска двигателей
Применение однофазных асинхронных двигателей
Однофазные двигатели не запускаются сами по себе и менее эффективны, чем трехфазные асинхронные двигатели. Доступны модели мощностью от 0,5 до 15 л.с., и, тем не менее, они широко используются для различных целей, таких как:
- Часы
- Холодильники, морозильники и обогреватели
- Вентиляторы, настольные вентиляторы, потолочные вентиляторы, вытяжные вентиляторы, воздухоохладители и водяные охладители.
- Воздуходувки
- Стиральные машины
- станки
- Сушилки
- Пишущие машинки, фотостаты и принтеры
- Водяные насосы и погружные насосы
- Компьютеры
- Шлифовальные машины
- Сверлильные станки
- Прочие бытовые приборы, оборудование и устройства и т.