Схема включения асинхронного двигателя


Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Содержание

  • Подготовка асинхронного электродвигателя к включению
    • Определение начала и конца обмотки
    • Выбор схемы подключения электродвигателя
  • Подключение асинхронного электродвигателя
    • Схема прямого включения асинхронного электродвигателя
    • Схема реверсивного включения электродвигателя
  • Вывод

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

Схемы подключения электродвигателя 380 и 220 (фото, видео)

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Особенности конструкции пускателей

На фото магнитного пускателя в разобранном положении отчетливо видны самые крупные детали: корпус, магнитопровод, катушка, контакты, пружина возврата. Корпус разборный, разделен на две части, соединяющихся винтами.

  • Выполнен из негорючего, тугоплавкого диэлектрического материала. Одна его часть — съемная литая крышка.
  • Она разделена на три полости по количеству замыкаемых контактов.

Для уменьшения негативного влияния токов самоиндукции, возникающих при размыкании контактов, в конструкции магнитного пускателя предусмотрены ребристые гасители электрической дуги. Они расположены в каждой секции крышки.

Важная часть пускателя — магнитопровод. Он состоит из подвижной, неподвижной частей. Изготовлен из набора пластин электротехнической стали. Пластинчатое строение препятствует возникновению токов Фуко, уменьшает нагревание, но не мешает течению магнитного потока. Пластины имеют форму буквы «Ш».

Часть магнитопровода, находящаяся снизу, неподвижна, жестко закреплена в основании, верхняя часть двигается; на ней расположены подвижные контакты. Они бывают двух видов: нормально замкнутые, разомкнутые; при поступлении импульса разомкнутые контакты замыкаются, а замкнутые — разрывают цепь. Катушка установлена в пазах нижней части.

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

I = U/Rобм, где

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

I = (U — Eпрот)/Rобм

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:


Рис. 5. Схема пуска с изменением питающего напряжения

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Навигация по записям

Бросьте далеко ходить. И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Если в процессе подключения наблюдается гул, но при этом двигатель не крутится, соответственно требуется установка конденсатора, который в процессе запуска заставляет мотор крутиться, как на фото подсоединения электрического двигателя на сайте.


Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией — в виде звезды или треугольника.


На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу.


Учтите, фазы в пределах одного потребителя нужно нагружать поровну грубо говоря, по чайнику каждой линии дайте , иначе негативные последствия коснутся питающего трансформатора подстанции. Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов.


Заряды двигаются по проводам меж фазами. Существует множество схем для включения асинхронного мотора, но применяется на практике немного: С использованием балластного сопротивления, подключенного к обмотке пуска.


К сведению!


Хороший КПД. подключение двигателя 380 на 220 вольт

В чем разница между асинхронными и синхронными двигателями?

Загрузите эту статью в формате . PDF

Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики двигателя. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации мотора. Среди классических примеров этого явления — асинхронные и асинхронные двигатели.

Все асинхронные двигатели являются асинхронными. Асинхронный характер работы асинхронного двигателя возникает из-за скольжения между скоростью вращения поля статора и несколько более низкой скоростью вращения ротора. Более конкретное объяснение того, как возникает это скольжение, касается деталей внутреннего устройства двигателя.

Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), называемый беличьей клеткой. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов проводящими кольцами, которые электрически закорачивают стержни друг с другом. Сплошной сердечник ротора состоит из пакетов пластин из электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым кратным пазам статора, чтобы предотвратить магнитную блокировку зубьев ротора и статора при запуске двигателя.

Также можно найти асинхронные двигатели, роторы которых состоят из обмоток, а не из беличьей клетки. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средства снижения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного соединения каждой обмотки ротора с резистором. Обмотки получают ток через какое-то контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора переключаются на короткое замыкание, таким образом, электрически он становится таким же, как ротор с короткозамкнутым ротором.

Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к сети переменного тока. Приложение напряжения к статору вызывает протекание тока в обмотках статора. Протекание тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила возникает, когда петля провода перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда отстает от поля статора на некоторую величину, поэтому оно вращается со скоростью, несколько меньшей, чем скорость статора. Разница между ними называется скольжением.

Величина скольжения может варьироваться. Это зависит в основном от нагрузки, которую приводит двигатель, но также зависит от сопротивления цепи ротора и силы поля, которое индуцирует поток статора.

Несколько простых уравнений проясняют основные взаимосвязи.

Когда переменный ток изначально подается на статор, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и в статоре. Когда ротор начинает вращаться, частота наведенного в нем напряжения f r , капли. Если f - частота напряжения статора, то скольжение, с, связывает два через f r = с f . Здесь s выражается в виде десятичной дроби.

Когда ротор стоит на месте, ротор и статор эффективно образуют трансформатор. Таким образом, напряжение E , индуцируемое в роторе, определяется уравнением трансформатора0022 м

где N = количество проводников под одним полюсом статора (обычно небольшое для двигателя с короткозамкнутым ротором) и Ñ„ м = максимальный магнитный поток, Webers. Thus, the voltage E r induced while the rotor spins depends on the slip:

E r = 4.44 s f N Ñ„ m = s E

Описание синхронных двигателей

Синхронный двигатель имеет специальную конструкцию ротора, которая позволяет ему вращаться с той же скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением. Однако недавние достижения в области схем управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, воздуходувки и ведущие мосты во внедорожных транспортных средствах.

В основном существует два типа синхронных двигателей:

• С самовозбуждением — Принципы аналогичны асинхронным двигателям, и

• С прямым возбуждением — обычно с постоянными магнитами, но не всегда

Синхронный двигатель с самовозбуждением , также называемый вентильным реактивным двигателем, содержит стальной литой ротор с прорезями или зубьями, получившими название явно выраженных полюсов. Именно выемки позволяют ротору зафиксироваться и работать с той же скоростью, что и вращающееся магнитное поле.

Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки/фазы статора аналогично шаговому двигателю. Синхронный двигатель с прямым возбуждением может называться по-разному. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянными магнитами. В этой конструкции используется ротор с постоянными магнитами. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется двигателем с внутренними постоянными магнитами).

Постоянные магниты являются выступающими полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотках статора в нужное время с помощью полупроводниковых переключателей, сводя к минимуму пульсации крутящего момента. Принцип работы всех этих типов синхронных двигателей в основном одинаков. Энергия подается на катушки, намотанные на зубья статора, которые создают значительный магнитный поток, пересекающий воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если выступающий полюс ротора идеально совмещен с зубцом статора, крутящий момент не возникает. Если зубец ротора находится под некоторым углом к ​​зубу статора, по крайней мере часть потока пересекает зазор под углом, не перпендикулярным поверхностям зубьев. Результатом является крутящий момент на роторе. Таким образом, переключение питания на обмотки статора в нужное время вызывает картину потока, которая приводит к движению по часовой стрелке или против часовой стрелки.

Еще один тип синхронного двигателя называется вентильным реактивным двигателем (SR).

Его ротор состоит из стальных пластин с набором зубьев. Зубцы магнитопроницаемы, а окружающие их участки слабопроницаемы в силу прорезанных в них пазов. Таким образом, ротору не нужны обмотки, редкоземельные материалы или магниты.

В отличие от асинхронных двигателей, в роторе отсутствуют стержни ротора и, следовательно, в роторе не протекает ток, создающий крутящий момент. Отсутствие проводника какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях с роторами, несущими проводники. Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем модуляции крутящего момента (посредством тока обмотки). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. Производство крутящего момента не зависит от скорости двигателя. Это отличается от асинхронных двигателей переменного тока, где при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения оборотов двигателя.

Реверсивные однофазные асинхронные двигатели

Реверсивные однофазные асинхронные двигатели

Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают, как реверсировать асинхронный двигатель переменного тока. Ранее я не рассказывал подробно о том, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора. Алюминий тоже проходит. продольные отверстия в роторе, чтобы сделать короткую «беличью клетку» обмотка цепи. Вы можете едва видеть линии под небольшим углом на роторе где проходят обмотки.

Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если он подвергается воздействию вращающегося магнитного поля, он попытается следовать ему. (подробнее об этом здесь)

В трехфазном двигателе три фазы на трех обмотках естественно создать вращающееся магнитное поле. Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужна какая-то хитрость для создания вращающегося поля.

Реверс двигателя с расщепленной фазой

В этом двигателе с расщепленной фазой основная обмотка (обозначение «M») подключается напрямую к сети переменного тока 60 Гц, а другая обмотка (обозначение «О») включена последовательно с конденсатор (С). Взаимодействие между индуктивностью двигателя обмотки и емкость конденсатора делают эту обмотку около 90 градусов не совпадают по фазе с основной обмоткой.

С основной обмоткой, создающей переменное по вертикали магнитное поле, а другая обмотка создает магнитное поле, чередующееся по горизонтали но не в фазе, их сумма представляет собой вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

Для реверсирования двигателя достаточно просто переместить разъем питания. так что другая обмотка находится непосредственно на переменном токе. По существу, перемещение одна сторона силового соединения от (А) до (В), вызывающая обмотку (О) быть основной обмоткой, а обмотка (М) – фазосдвинутой.

В двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные числа витков, поэтому этот метод реверсирования может быть неприменим. Сначала проверьте, чтобы сопротивление обеих обмоток было одинаковым.

Если обмотки не одинакового сопротивления, можно еще поменять местами изменением полярности одной из обмоток при условии, что обмотки не связаны между собой внутри двигателя (например, более трех провода, выходящие из обмоток).

Обмотки стартера на больших двигателях

Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных силы, обмотки выглядят намного сложнее. Обмотки распределены по множеству пазов в статоре двигателя (С). Туда, туда менее резкий переход от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его более тихим и более экономичный мотор.

Этот двигатель имеет толстую основную обмотку (М) и пусковую обмотку. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

Эта пусковая обмотка включена последовательно с конденсатором (С) и центробежным переключатель (S). В этом двигателе установлен пусковой конденсатор внутри основного корпуса. Как правило, пусковой конденсатор устанавливается сверху корпуса под металлическим куполом.

Центробежный переключатель (S) установлен на задней панели и активируется диском (P), который упирается в выступ на переключатель (слева от S на фото).

Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что в свою очередь тянет диск обратно. Это освобождает пластиковый язычок на переключателе, что приводит к размыканию переключателя и отключению обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не соприкасаться с вкладкой, сводя к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключиться на отжим.

Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, гораздо труднее различить.

Если обмотка стартера помогает пуску двигателя, то обязательно поможет мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну, весь фазовый сдвиг не так элегантен. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска двигателя вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором, а не рассчитан на постоянную нагрузку. А поскольку пусковая обмотка только используется недолго, поэтому он сделан из более тонкой проволоки, чтобы сэкономить деньги, потому что медь дорогая.

В некоторых двигателях для запуска используется большой конденсатор. меньший конденсатор для непрерывной работы. Такие двигатели часто имеют два внешних конденсатора (C), как видно на этом в моей настольной пиле. Эти двигатели называются двигателями с пусковым конденсатором. Двигатели с конденсаторным пуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных силы.

Двигатели можно удешевить, заменив конденсатор на резистор. Хотя обычно отдельный резистор не добавляется. Вместо, обмотка стартера сделана из более тонкого (более дешевого) медного провода, поэтому у него больше сопротивление в самой обмотке.

Это приводит к гораздо меньшему фазовый сдвиг, чем с конденсатором, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, и когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на индуктор, ток отстает от напряжения на 90 градусов. И магнитное поле является строго функцией тока.

Для резистора ток совпадает по фазе с напряжением. Если бы у нас было большое сопротивление и малая индуктивность последовательно, падение напряжения и ток во многом определяется резистором. Итак, ток и магнитное поле будет в значительной степени в фазе с приложенным напряжением. С ток в основной обмотке отстает на 90 градусов, мы бы имели Разница между ними составляет 90 градусов, но обмотка стартера было бы крайне неэффективно.

На самом деле компромисс гораздо дешевле фазового сдвига и большей мощности. Этого достаточно, чтобы запустить двигатель. Несмотря на это, стартер на этих двигателях довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако дополнительный ток требуется, чтобы стартер мог перегореть автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 лошадиных силы и выше обычно используется пусковой конденсатор.

Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, недостаточно, и вы можете прочитать больше об индукции двигатели, если вы этого не понимаете.

В асинхронных двигателях изнашиваются только подшипники. выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей, чтобы потерпеть неудачу.

Совсем недавно я случайно заклинил переключатель стартера на Резистивный пусковой двигатель мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и двигатель отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

Реверс конденсаторного пускового двигателя

Итак, как мы реверсируем двигатель с конденсаторным пуском? Как только началось, однофазная индукция двигатель будет счастливо работать в любом направлении. Чтобы обратить его, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и обмотки стартера. И это может быть достигнуто путем обращения полярность пусковой обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, иногда обмотка, переключатель и конденсатор перевернутый. Порядок переключателя и конденсатора не имеет значение, если они подключены последовательно.

Вы также можете реверсировать двигатель, поменяв местами основную обмотку. (тот же эффект).

Если бы вы поменяли местами основную и пусковую обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет работать в обратном направлении. Однако, он не будет работать на полную мощность и, скорее всего, сгорит. пусковая обмотка не пригодна для продолжительной работы.

На этикетке этого двигателя указано: «МОТОР НЕРЕВЕРСИВНЫЙ».

Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что есть из обмоток выходит всего три провода (красный, желтый и синий). Один конец основной и пусковой обмоток соединен вместе прямо на обмотках.

Чтобы поменять местами обмотку стартера, мне пришлось бы разорвать это соединение. внутри обмоток и вывести другой конец стартера обмотка. Но я действительно не могу понять это из-за как внутри мотора. пришлось бы прорезать дырку в корпус, чтобы даже добраться до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали обращение вспять более трудным, чем оно того стоит. беда.

Но на реверсивных двигателях этикетка всегда указывает на то, чтобы поменять местами два провода, чтобы изменить его.

Провода для реверса всегда являются проводами, ведущими к обмотке стартера.

Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет примерно в три раза электрическое сопротивление основного обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если он есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, можно реверсировать двигатель. Однако, если есть только из обмоток выходят три провода, затем основная и пусковая обмотки имеют один конец, связанный вместе, и двигатель не реверсивный.

Для двигателя мощностью 1/2 л.


Learn more