Свойства монтажной пены


Виды монтажной пены | Строительная пена | Свойства | Разновидности | Характеристики | Из чего сделана

Монтажную пену называют еще пенополиуретаном. Это универсальный герметик для заполнения трещин, улучшения звукоизоляции, утепления. На рынке можно найти десятки производителей герметизирующих материалов, которые отличаются между собой свойствами, техническими особенностями, показателями вязкости, прочности, адгезии и другими критериями.

Базовыми компонентами пенополиуретана считаются изоцианата и полиола. Под действием дополнительных компонентов происходит химическая реакция, в результате которой удается получить нужные свойства для решения поставленных строительных или ремонтных задач. Изначально из вышеуказанных компонентов изготавливали пену в жестком виде, затем разработали технологию гибкой консистенции, и только в конце смогли выпускать полужесткую монтажную пену. Именно она подходит для герметизации и запенивания щелей разных размеров.

Свойства монтажных пен

Чтобы понимать специфику использования монтажной пены, нужно ознакомиться с ее свойствами:

  • большой диапазон температур - от –200  до + 135 градусов. При какой температуре состав обеспечивает свои свойства, изучите в инструкции на баллоне. Производитель обязательно указывает эти факторы. Средний коэффициент теплопроводности пенополиуретана составляет 0,026 Вт на квадратный метр;
  • теплоизоляционные свойства;
  • устойчивость к относительно высоким нагрузкам, не поддается грибкам и плесени;
  • хорошая адгезия к вертикальным и горизонтальным поверхностям;
  • пористость текстуры, за счет которой материал «дышит». Пористые материалы имеют полости внутри. Встречаются виды пены монтажной с закрытыми и открытыми порами;
  • после полимеризации монтажная пена становится экологически безопасной, поскольку имеет химическую нейтральность.

К недостаткам материала относят относительную воспламеняемость и низкую стойкость к УФ-излучению.

Разновидности монтажных пен и их характеристики

Выделяют несколько критериев материалов, определяющие особенности пен:

  • Монтажные пены с открытыми и закрытыми порами.

Полиуретановые пены разделяют на два основных типа - с открытыми и закрытыми порами. Первый предназначен для использования внутри помещений, например, для изоляции стен и крыш, улучшения звукоизоляции, поскольку пенополиуретан, помимо теплоизоляционных свойств, обладает очень высоким коэффициентом шумоподавления. Пена с открытыми порами является паропроницаемой, что говорит о «дышащей» структуре. Такой материал лучше использовать на крови, для внешних работ.

Между собой эти два вида отличаются и плотностью. Пена с открытыми порами имеет плотность 7–14 кг/м3, а коэффициент теплопроводности колеблется в пределах 0,036 Вт/(м * К). Такие модели пенополиуретана обладают отличной огнестойкостью, поэтому их применяют в местах с потенциальными рисками.

 

Монтажные пены с закрытыми порами – это материалы по своей текстуре более жесткие и герметичные, потому пользуются спросом для отделки поверхностей на открытом воздухе. Также такие пены применяются в местах с повышенной влажностью. Около 90% объема монтажных пен занимают закрытые поры. Плотность – до 60 кг/м3, а теплопроводность может достигать 0,025 Вт/(м * К).

Типы монтажных пен с закрытыми порами различаются по параметрам в зависимости от их применения. Сфера применения материалов достаточно большая:  изоляция фундаментных стен, потолочных конструкций, крыш и полов, изоляция производственных объектов, складов, холодильных камер и других помещений.

  • Одно- и двухкомпонентные  монтажные пены.

Однокомпонентные пены нуждаются в реакции с влажностью, которую они берут непосредственно из воздуха. В этом случае начинается процесс полимеризации. Эксперты даже советуют предварительно увлажнять рабочую поверхность, чтобы ускорить затвердение монтажной пены. Двухкомпонентные пены полимеризуются за счет двух компонентов в своем составе.

Однокомпонентная пена используется в помещениях с неограниченным потоком воздуха и на открытом воздухе. Объяснить это очень легко: чем выше влажность и температура воздуха, тем быстрее полимеризуется пена. Где-то через 30-40 минут пена увеличивается в объеме примерно на 35%. Следовательно, эту характеристику материала нужно учитывать при заполнении щелей.

Двухкомпонентная монтажная пена вступает в химическую реакцию без доступа влаги. Поэтому его можно использовать в труднодоступных местах, где нет потока воздуха. Этот тип пены также подходит для фиксированного соединения деревянных изделий. Щели заполняются примерно на 80%, а коэффициент увеличения достигает 30%.

  • Бытовые и профессиональные строительные материалы.

Монтажная пена бытового назначения продается вместе с трубочкой для ее использования. Это вариант для одноразового применения. Профессиональные виды пен можно использовать на протяжении длительного времени. Их распыливание происходит через специальный пистолет для монтажных пен.

  • Зимние, летние, всесезонные.

Пенополиуретановые пены могут отличаться в зависимости от диапазона температур воздуха во время отделки поверхности. Зимние пены используются при низкой температуре, а летние пены - при температуре не ниже 10 ° C. Всесезонная пена обладает наилучшей температурной стойкостью. Ее нельзя использовать при чрезвычайно низких и чрезвычайно высоких температурах.

Особенности состава монтажных пен: токсичен ли он

Монтажную пену изготавливают путем соединения двух отдельных компонентов жидкости. Некоторые производители добавляют различные компоненты, которые делаю герметик еще более универсальным и качественным. Первая группа компонентов - полиолы, обычно содержит поверхностно-активные вещества и катализаторы. Также известно, что этот поток содержит вспенивающие соединения. Другие группы веществ, определяющие тип полиуретана, который производится для решения строительных и ремонтных задач.

Полиуретан в основном химически инертен и поэтому не является токсичным при нормальных условиях. Однако это соединение классифицируется как горючее вещество и должно храниться вдали от открытого огня. Важно, что реакция разложения полиуретана может привести к образованию газообразного оксида углерода, который очень токсичен для человека. При сжигании этого соединения образуется большое количество цианистого водорода, который также считается токсичным. Это одна из причин, из-за чего пенополиуретаны обычно обрабатываются огнезащитными веществами в процессе производства. В целом, после затвердения герметик считается безопасным, если он не подвергается горению. Пока консистенция не пошла этап полимеризации, она может оказывать токсическое действие. Именно поэтому специалисты советуют пользоваться средствами защиты.

Советы по работе с монтажными пенами

Каждый производитель в инструкции к применению излагает базовые требования технологии. Если же вы хотите качественно выполнить свою работу и просчитать расход, нужно учитывать ряд тонкостей работы с монтажными пенами. Возьмите на заметку рекомендации специалистов, которые обязательно пригодятся вам на практике:

  • время полимеризации зависит от температуры воздуха и влаги. Если вы работаете в закрытом помещении, затвердение герметика  будет происходить дольше, поскольку реакция происходит именно при взаимодействии с влагой. С сухим микроклиматом придется больше времени уделить процессу высыхания;
  • для работы с небольшими швами лучше всего использовать строительные материалы с небольшим коэффициентом расширения, поскольку вы сможете ее нанести аккуратнее и сэкономить время на удаление остатков герметика;
  • храните пистолет с остатками монтажной пены в баллоне не более 5-ти дней;
  •  если вы ищите действительно надежный герметик, при выборе возьмите баллон в руки и попробуйте немного встряхнуть. Качественная продукция всегда имеет ощутимый вес, а при взбалтывании консистенция перемещается по емкости;
  • обязательно оцените внешний вид баллона. Он должен быть без деформаций. При покупке целой партии  монтажных пен убедитесь, что монтажную пену хранили в надлежащих условиях;
  • если вы намерены купить пистолет для монтажной пены, выбирайте металлические прочные конструкции. Пластиковые несущие элементы быстро изнашиваются, что приводит к выходу из строя пистолета. Инструменты из нержавеющей стали считаются самыми востребованными. В модели должно быть предусмотрено наличие регулятора для выбора интенсивности подачи раствора;
  • вместе с баллоном и пистолетом лучше сразу покупать очиститель. Он пригодится для чистки инструмента и удаления остатков герметика на поверхности. Изготавливают очистители и ацетона, диметилового эфира. Развести такие очищающие растворы при желании можно и самостоятельно;
  • щели для заполнения монтажной пеной должны быть не более 5 сантиметров. В противном случае будет сложно сориентироваться с расходом, рассчитать нужное количество монтажной жидкости. Важно учитывать и коэффициент расширения;
  • если на рабочей поверхности, руках, одежде остались следы монтажного раствора, лучше попробовать избавиться от него до момента застывания. Если упустили этот момент, возможно, придется устранять дефект механическим способом;
  • несмотря на универсальность монтажной пены, далеко не все специалисты советуют применять ее для наружных работ. Оцените, настолько это целесообразно для внешней отделки с учетом климатических условий.

Как наносить монтажную пену?

Для начала изучите характеристики продукта от производителя. Это важно, поскольку только изготовитель знает особенности своего продукта, свойства материала, может дать ценные  совету по распылению монтажной пены. Рассмотрим базовую инструкцию по применению монтажного раствора:

  • начните с выбора средств защиты. К ним относятся: защитные очки и перчатки. В таком случае не придется много времени уделять очистке рук;
  • снимаем клапан с баллона и устанавливаем его в пистолет либо вкручиваем трубочку к нему, которая чаще всего идет в комплекте с монтажной пеной;
  • тщательно встряхиваем баллон для получения однородной консистенции. Встряхиваем не менее минуты, чтобы компоненты тщательно перемешались между собой;
  • рабочую поверхность обрабатываем водой. Не допускайте сильного увлажнения, чтобы на основаниях не скапливалась вода. За счет того удается улучшить адгезию и уменьшить время полимеризации герметика;
  • монтажная пена наносится сверху вниз, держа баллон дном вверх. За счет того газ вытесняет пену и удается обеспечить равномерную подачу герметика;
  • состав монтажной пены расширяется в ходе полимеризации. Именно поэтому щели заполняют где-то на треть объема. После расширения щель заполняется полностью;
  • после распыления пены рекомендовано еще раз взбрызнуть водой поверхность. Процесс полимеризации ускорится, и вы сможете приступить к дальнейшей отделке.

Процесс высыхания монтажной пены

Процесс затвердевания зависит от ряда факторов. Чаще всего его связано с особенностями состава и условий окружающей среды. В инструкции вы ознакомитесь со всеми критериями продукта. Полимеризация бывает первичной и вторичной. Первый этап наступает примерно через 20 минут, после чего можно наносить следующий слой герметика. Окончательное затвердевание наступает через 12 часов. 

Если вам нужно ускорить процесс, выбирайте специальные растворы с быстрой полимеризацией. Производители добавляют в составы специальные компоненты, способствующие быстрому затвердеванию. Также поможет вода, которой можно обработать поверхность до начала работ и по окончанию. Единственное, не допускайте конденсата. Это должно быть разумное увлажнение, взбрызгивание.

Обзор производителей монтажной пены и характеристик продукта

Всего на рынке есть несколько лидеров по производству качественного продукта. Так, немецкий бренд Dr. Schenk работает с крупными компаниями, поставляя монтажную пену по всей Европе. Также компания специализируется на изготовлении различных отделочных материалов. Стоимость монтажной пены у Dr. Schenk доступная, поэтому филиалы компании пользуются спросом на рынках Европы и СНГ.

Penosil – это эстонский производитель, который выпускает бытовые и промышленные виды пен. Бренд поставляет монтажную пену крупным компаниям, занимающимися ремонтными и строительными работами.

Soudal выступает новатором технологий в строительной индустрии, делая пену максимально удобными в использовании. Им удается сократить время полимеризации, улучшить адгезию. За счет этого в каталоге бренда можно найти десятки нестандартных производственных решений.

Realist ориентируется на изготовление пенных герметиков. Она выпускает составы для бытового и профессионального применения. Бренд предлагает линейку монтажных пен, которые можно использовать в разных условиях окружающей среды, температурных режимах.

Makroflex знаменита за счет особенностей текстуры после затвердения. После полимеризации она не видоизменяется, сохраняет свои свойства, не крошится и не деформируется на протяжении нескольких десятков лет.

Перед покупкой обязательно убедитесь, что выбранная монтажная пена соответствует вашей среде применения. Ориентируйтесь на показатель плотности, вязкости, состав, время полимеризации, расход. Также вы можете знакомиться с отзывами покупателей, которые уже протестировать монтажные пены. Не игнорируйте инструкцию производителя и не забывайте о мерах предосторожности, чтобы работа с универсальным герметиком принесла отличный результат.

 


виды, технические характеристики и применение — Статьи «Первый Стройцентр» в Екатеринбурге

Монтажная пена – незаменимый при многих строительных работах материал, наличие которого позволяет эффективно решать множество рабочих вопросов. Её применяют для герметизации стыков и швов, повышения звуко- и влагоизоляции помещений, а также для скрепления некоторых элементов друг с другом. Тем не менее, не все знают, как пользоваться монтажной пеной правильно – так, чтобы её применение давало максимально качественный результат при минимальных затратах. В этой статье мы подробно рассмотрим свойства и виды монтажной пены, их отличия и область применения.

Особенности и свойства монтажной пены

Популярность монтажной пены связана с её потребительскими характеристиками, которые отличаются массой достоинств. Среди них особенно стоит выделить следующие:

  • высокая адгезия обеспечивает прочное сцепление с любыми материалами: деревом, металлом, пластиком, камнем;

  • быстрое время застывания: монтажная пена хорошего качества высыхает полностью от 8 минут до 24 часов;

  • термостойкость, позволяющая использовать её при температурах от -45 до 90 градусов.

  • негорючесть и полная атоксичность после высыхания: при правильной эксплуатации монтажная пена не наносит никакого вреда;

  • невысокая теплопроводность, благодаря которой теплоотдача помещения остаётся на минимуме;

  • минимальная усадка, достигающая не более 5% от общего объёма;

  • значительная прочность, позволяющая использовать монтажную пену в качестве современного и эффективного фиксатора;

  • пластичность, обеспечивающая полное заполнение заливаемых полых пространств.

Виды монтажной пены

Свойства и характеристики напрямую зависят от состава монтажной пены. Сегодня рынок предлагает две разновидности этого материала:

  • однокомпонентные – полностью готовые к использованию составы, находящиеся в баллоне под давлением;

  • двухкомпонентные – смеси, которые готовятся из двух компонентов непосредственно перед началом работ. Требуют большого профессионализма при использовании, так как достижение высоких характеристик пены возможно только при правильном соотношении составляющих. Как правило, применяются такие составы при работах на промышленных объектах.

Часто клиенты спрашивают: какая монтажная пена лучше, однокомпонентная или двухкомпонентная – но сам вопрос неправилен: они имеют различную сферу применения, и сравнивать друг с другом было бы ошибочно.

Монтажная пена: технические характеристики

Качество отделочных работ с использованием монтажной пены во многом зависит от того, какая пена используется на объекте. Для того, чтобы добиться наилучшего результата, важно знать, где и как применять те или иные разновидности монтажной пены, как правильно её выбрать и на какие показатели обращать внимание при покупке.

Расширение

Данный показатель говорит о том, во сколько раз увеличится объём субстанции – и влияет не только на заполняющую способность, но так же и на упругость и плотность получаемого уплотнительного шва. Расширение происходит дважды: первый раз по выходу смеси из баллона, затем – по её высыхании. От степени расширения (особенно от вторичного) зависит качество уплотнения, а также расход монтажной пены.

Степень расширения меняется не только в зависимости от производителя пены, но также от её типа:

  • от 10 до 60% - у пены, предназначенной для бытовых работ,

  • от 180 до 300% - у профессиональной.

Вязкость

Этот параметр говорит о том, насколько монтажная пена сохраняет свою форму – боле вязкая хорошо держится даже в больших щелях и не сползает, в то время как пена с низкой вязкостью растекается и плохо показывает себя в качестве фиксатора.

К сожалению, определить вязкость монтажной пены можно только уже поле покупки, убедившись в её свойствах собственными глазами. Тем не менее, есть шанс не ошибиться – если покупать продукцию от проверенных брендов, выпускающих только качественные изделия.

Объём

Чтобы купить правильное количество баллонов с монтажной пеной, нужно знать, какой объём она займёт по окончании отделочных работ. Поскольку у разных марок показатель может варьироваться, можно назвать только примерные показатели:

баллон на 300 мл содержит 20 литров пены. Этого должно хватить на запенивание коробки при монтаже окна 1,2 на 1,5 метров.

500 мл – выход пены достигнет 35 литров. Достаточно для дверной коробки 2 на 0,8 метра.

650 мл – от 40 до 70 литров. Хватит на три окна или две двери.

Высыхание

На скорость работ немало влияет, сколько сохнет монтажная пена. Этот параметр может варьироваться от 8 минут до 24 часов и зависит от температуры в помещении, влажности воздуха, времени года.

Влагостойкость

Пропускает ли воду монтажная пена? Этот вопрос озадачивает многих, учитывая, что все дают на него кардинально разные ответы. На самом деле всё довольно просто – монтажная пена не создана для гидроизоляции, выполняя совершенно другие функции, однако обычно не пропускает воду, благодаря чему может стать дополнительным защитным слоем, защищающим конструкцию от влаги.

Срок годности

Несмотря на то, что работа с монтажной пеной довольно проста, а инструкция от производителя, как правило, содержит исчерпывающую информацию о её применении, многие пользователи по-прежнему задаются различными вопросами, например: можно ли использовать просроченную монтажную пену?

Срок службы монтажной пены составляет от года до полутора лет – затем она приходит в негодность. Правда, многие так не считают, поскольку по внешнему виду это не всегда бывает заметно – при нажатии на кнопку смесь выходит из баллона, как и прежде. Но только сохраняются ли у такой монтажной пены потребительские свойства?

Разумеется, ответ может быть только отрицательным – ведь в противном случае срок годности вообще бы не указывали. Случаи, когда просроченная пена может вполне неплохо заполнить пространство в щелях и успешно скреплять конструкции можно пересчитать по пальцам – а вот значительное ухудшение её рабочих характеристик отмечается практически всегда.

Состояние монтажной пены напрямую зависит от условий хранения – при оптимальной влажности и температуре она действительно может сохранить свою эффективность – с переменным успехом. Однако обычно со временем пена просто выдыхается, становится ломкой, при высыхании расширяется меньше, чем положено, и обладает большой хрупкостью. Происходит это по той причине, что внутри баллона расположен клапан, герметичность которого со временем снижается – равно как и свойства монтажной пены. Входящие в состав пены вещества, разумеется, также подвержены ухудшению, поэтому после обработки просрочкой уже очень скоро в проложенном слое могут появиться трещины, появляется усадка. Нередки случаи, когда просроченная пена попросту не хочет выходить из баллона – она высыхает прямо внутри него. Что, кстати, даже лучше для потребителя – если бы такую пену всё-таки удалось бы использовать, она бы высохла и потрескалась уже по окончании монтажных работ, серьёзно ухудшив их качество.

Важно: обязательно смотрите на дату изготовления пены и не берите её загодя, если не планируете использовать до окончания срока годности. Также следите, чтобы срок хранения был пропечатан ровно и качественно, без исправлений – и по сей день встречаются случаи, когда продавцы совершают уловки, чтобы продать старую пену по цене новой.

Если вы хотите купить качественную, надёжную – и всегда свежую – монтажную пену, найдите её в магазине «Первый стройцентр Сатурн-Р». В нашем ассортименте – пена от российских и зарубежных производителей, давно зарекомендовавших себя с самой лучшей стороны. Гарантируем доступные цены и качество каждого продукта. Проверено на своём опыте!

Свойства пены Что отличает одну пену от другой

Опубликовано Дэйв Шерман, 21 августа 2018 г.
Elastomeric Material Solutions

Этот пост (первоначально написанный Дейвом Шерманом) появился в блоге PORON Cushioning. Обновлено 21.08.2018

Пена есть пена, верно?

Одним словом (или тремя) не так уж и много. Наши клиенты часто удивляются, узнав, что все материалы PORON ® Comfort представляют собой пенополиуретаны с открытыми порами, особенно когда они привыкли видеть пенопласты EVA с закрытыми порами или пенополиуретаны с закрытыми порами.

Пена с открытыми порами имеет много преимуществ и свойств, которых нет у пен с закрытыми порами. Одним из самых больших является то, что он предлагает наилучшую устойчивость к остаточной деформации при сжатии (C-Set) или, для любителей пены, устойчивость к разрушению после многократного использования. По сути, это означает, что пена очень прочная, не разрушается и не теряет своих амортизирующих свойств после многократного использования. В мире обуви это означает постоянную посадку, форму и функциональный уровень, а также сохранение внешнего вида обуви в том виде, в каком она была разработана.

Пенопласты с закрытыми порами и пенопласты с открытыми порами

Вот что еще следует учитывать…

Пенопласты с закрытыми порами:

Пенопласты с закрытыми порами, или пенопласты EVA, состоят из полных пузырьков воздуха. Пузырьки воздуха задерживаются в пене со стенками ячеек, которые препятствуют выходу воздуха. Слипшиеся вместе, как мыльные пузыри в пенной ванне, воздушные карманы имеют решающее значение для функционирования пены. Когда пена сжимается, сжимается и воздух внутри пузырьков, что позволяет пене пружинить при снятии давления. По этой причине они часто используются в стельках для обуви и спортивных прокладках, где ключевыми факторами являются сопротивление и защита.

Свидетельство этого свойства можно продемонстрировать с помощью теннисного мяча. Известно, что теннисные мячи прыгают из-за того, что внутри мяча находится воздух. Но как только теннисный мяч используется несколько раз, воздух начинает просачиваться, в результате чего мяч теряет упругость.

Применяя эту аналогию к пенам с закрытыми порами, это точка, в которой пена начинает становиться плоской или «схватываться» (помните всю эту историю с C-Set?). Вот почему стельки или набивка, сделанные исключительно из пены с закрытыми порами, со временем становятся менее удобными или менее защищающими при следующем ударе.

Пена с открытыми порами:

Пены с открытыми порами также имеют свои плюсы и минусы. Материалы PORON Comfort состоят из открытых ячеек, соединенных порталами, которые позволяют воздуху проходить между ними.

Это означает, что свойства этих материалов зависят не от пузырьков воздуха, а от свойств материалов стенок их ячеек. Благодаря этому они реагируют на давление подобно пружине, возвращаясь в исходное положение после каждого сжатия в обязательном порядке благодаря свободному прохождению воздуха через ячейки. Структура с открытыми порами также позволяет пропускать пары влаги, обеспечивая воздухопроницаемость и сохраняя окружающую среду обуви.

Материалы с открытыми порами PORON Comfort, доступные в различных запатентованных рецептурах, разработаны для обеспечения определенной функциональности, обеспечения нужного уровня поддержки и воздухопроницаемости для конечного пользователя в течение дня и на протяжении всего срока службы обуви.

Итак, какой из них подходит для вашего приложения?

У каждого типа пенопласта есть свои преимущества и недостатки, которые следует учитывать при принятии решения о том, какой из них использовать. Пенопласты с закрытыми порами могут быть очень легкими, так как стенки их ячеек могут быть очень тонкими, но обычно жесткими из-за несжимаемости воздуха внутри них. Они также могут лучше противостоять проникновению жидкости, чем материалы с открытыми порами.

Вспененные материалы с открытыми порами не только устойчивы к схватыванию, но и мягче, и их легче сжимать. Их ячейки также обеспечивают воздухопроницаемость и лучшее сопротивление сжатию (CFD) или, другими словами, меру их прочности или несущей способности.

Иногда правильный раствор пены представляет собой комбинацию материалов с закрытыми и открытыми порами. Используя лучшее из обоих миров, некоторые конструкции состоят из пены с закрытыми порами и пены с открытыми порами, что позволяет более гибкому слою с открытыми порами (например, PORON Comfort) соответствовать форме, заданной в материале с закрытыми порами (например, EVA). .

См. в таблице ниже сводку преимуществ каждого типа пены:

Свойства пены Открытая ячейка Закрытая ячейка Измерение свойств
Отклонение силы сжатия (CFD) Мягкость/Комфортность
Комплект сопротивления сжатию Жизнь собственности
Антимикробный * Интегральное покрытие
Воздухопроницаемость МВТР-Да/Нет
Водопоглощение % Поглощение через некоторое время
Возможность стирки Циклов при настройке
Формование
Гибкость

* Доступна дополнительная дополнительная защита

Помните об этих различиях, поскольку они связаны с вашим приложением и конструкцией. Если ваше приложение требует более легкого веса и моющейся способности, выберите пенопласт с закрытыми порами. Однако, если долговечность и надежность имеют решающее значение для вашего применения, выберите материалы PORON Comfort в качестве решения.

Теги:
Обувь, Защита от ударов, Общепромышленный

Комментарии

Здравствуйте! Является ли ПОРОН патентованным материалом компании Rogers? Я слышал, как люди говорили о ПОРОНЕ от других поставщиков. Мне нужно уточнить, а не собирать поддельный товар. Спасибо.

Ответ Роджерса: С гордостью производимый уже почти 50 лет, никто, кроме корпорации Rogers и ее совместных предприятий, не производит полиуретановый материал PORON®. В последнее время на рынке наблюдается увеличение количества имитационных материалов, что привело к появлению продуктов, которые, хотя иногда и неправильно маркируются как «PORON», не соответствуют высоким стандартам качества и спецификациям настоящего материала PORON.

Опубликовано Panson Poon 28 июня 2022 г.

Вернуться в блог , представляет собой метастабильную дисперсию относительно большого объема газа в непрерывной жидкой фазе, которая составляет относительно небольшой объем пены. Альтернативное определение объемной пены - это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа достаточно высокое (часто от 60 до 97% объема). В объемной форме, например, в наземных сооружениях и трубопроводах нефтяных месторождений, пена образуется, когда газ контактирует с жидкостью при наличии механического перемешивания. Используемый здесь объемный пенопласт представляет собой пенопласт, который существует в контейнере (например, в бутылке или трубе), для которого объем контейнера намного больше, чем размер отдельных пузырьков пенообразователя.

Состав

  • 1 Общая природа пен
    • 1. 1 Пенообразователи
    • 1.2 Свойства пены
  • 2 Режим впрыска
  • 3 Каталожные номера
  • 4 примечательных статьи в OnePetro
  • 5 Внешние ссылки
  • 6 См. также
  • 7 Категория

Общая природа пен

Капиллярные процессы определяют образование и свойства пен в пористой среде. Пены для улучшения соответствия представляют собой дисперсии пузырьков микрогаза, обычно с диаметром/длиной в диапазоне от 50 до 1000 мкм. Пена в пористых средах существует в виде отдельных пузырьков микрогаза, непосредственно контактирующих со смачивающей жидкостью стенок пор. Эти пузырьки микрогаза разделены пластинками жидкости, которые соединяют стенки пор и образуют жидкую перегородку на шкале пор между пузырьками газа. Пена распространяется в большинстве вмещающих пород-коллекторов в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего пленкой ламелей жидкости. Во многих случаях отдельные пузырьки пены в основной породе коллектора могут иметь длину во много поровых тел. Гауглиц и др. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе, по крайней мере, с некоторыми путями потока газа, разделенными тонкими жидкими пленками, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены, для стабилизации газовой дисперсии в жидкости. Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический/плотный CO 2 . За исключением специально оговоренных случаев, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия нефтяных месторождений, представляют собой пены на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двумерный срез общей пенопластовой системы. [3] Тонкие пленки жидкости, разделяющие пузырьки пенообразователя, определяются как пластинки пенопласта. Соединение трех ламелей газового пузыря под углом 120° называется границей Плато. В стойких объемных пенах сферические пузырьки пенного газа превращаются в пенные ячейки, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем правильные додекаэдры. В трех измерениях четыре границы Плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109°.°. [3]

Пены в пористой среде обычно имеют пузырьки, которые по размеру равны или больше пористых тел. Пена существует в пористых средах пород-коллекторов в виде цепочек пузырьков, где граница Плато ламелей пены формируется на стенке поры и имеет, для статической нетекущей пены в теле поры, угол около 90° между ламелями жидкости и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пены, обсуждаемой в этой статье. Понимание основных химических свойств поверхностно-активных веществ необходимо при выборе подходящего поверхностно-активного вещества для конкретного применения пены на нефтяном месторождении.

Молекула поверхностно-активного вещества содержит в одной и той же молекуле как полярный, так и неполярный сегмент. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде. Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и нефть или вода и газ находятся в контакте, молекулы поверхностно-активного вещества имеют тенденцию разделяться на границу раздела нефть/вода или газ/вода и уменьшать межфазное натяжение на границе раздела. Рис. 2 изображена молекула поверхностно-активного вещества, находящаяся на границе раздела масло/вода. Разделение молекулы поверхностно-активного вещества на границе раздела газ/вода и последующее снижение межфазного натяжения является основным механизмом, посредством которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

Поверхностно-активные вещества подразделяются на четыре типа, отличающиеся химическим составом полярной группы молекулы поверхностно-активного вещества.

  • Анионные вещества — полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а встречный и поверхностно-неактивный катион (часто натрий) сильно разделен на водная сторона границы раздела нефть/вода или газ/вода. Анионные поверхностно-активные вещества часто используются в нефтепромысловых пенах, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, достаточно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионоактивы — полярная группа катионоактивного поверхностно-активного вещества представляет собой соль, в которой полярная катионоактивная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону поверхности раздела масло/вода или газ/вода. . Катионные поверхностно-активные вещества редко используются в нефтепромысловых пенах, потому что они склонны сильно адсорбироваться на поверхности глины и песка и относительно дороги.
  • Nonionics — полярная группа неионогенного поверхностно-активного вещества представляет собой не соль, а химическое соединение, такое как спиртовая, эфирная или эпоксидная группа, которая способствует свойствам поверхностно-активного вещества, создавая контраст электроотрицательности. Неионогенные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики ранее перечисленных химических типов поверхностно-активных веществ.

На рис. 3 показана химическая структура некоторых поверхностно-активных веществ. В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвленности липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пенистого поверхностно-активного вещества точно так же, как химический состав гидрофильной части молекулы поверхностно-активного вещества. Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат распределение типов и размеров поверхностно-активных веществ, что еще больше усложняет поверхностно-активные вещества, используемые в пеноматериалах, улучшающих соответствие требованиям.

При использовании пены в сочетании с заводнением паром или любым применением при повышенной температуре резервуара важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре. Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенопластах, применяемых в высокотемпературных (> 170°F) резервуарах. Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (< 120°F) коллекторах.

Альфа-олефиновые сульфонаты стали одним из наиболее популярных и широко используемых химических поверхностно-активных веществ для использования в пеноматериалах. Это произошло в значительной степени из-за их комбинированных хороших характеристик пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости. Смеси поверхностно-активных веществ с различным химическим составом были предложены для обеспечения преимуществ при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в рецептурах пеноматериалов показало некоторые перспективы. [5] Сообщалось, что фторсодержащие поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к воздействию масла. [6] Фторсодержащие поверхностно-активные вещества не нашли широкого применения в промысловых пенах в основном из-за их относительно высокой стоимости.

Свойства пены

Некоторые свойства, важные для характеристики объемной пены, которые могут существовать в бутылке, включают качество пены, текстуру пены, распределение пузырьков по размерам, стабильность пены и плотность пены. Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пеноматериалы для улучшения эксплуатационных характеристик нефтяных месторождений обычно имеют качество пенообразования в диапазоне от 75 до 90%. При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто > 93% качества пены). При работе с паровыми пенами на нефтяных месторождениях качество пара относится к массовой доле воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится тоньше, пена будет иметь большее сопротивление течению в вмещающей породе.

Распределение размеров пузырьков является мерой распределения размера пузырьков газа в пене. При неизменности всех других переменных объемная пена с широким распределением размеров пузырьков газа будет менее стабильной из-за диффузии газа от маленьких пузырьков газа к большим. Сопротивление течению жидкости в пористой среде со стороны пены будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств стабилизированной поверхностно-активным веществом водной пленки, разделяющей газовые пузырьки пены. Пены являются метастабильными образованиями; следовательно, все пены в конечном итоге разрушатся. Распад пены происходит в результате чрезмерного утончения и разрыва пленок жидкой пены со временем, а также в результате диффузии газа из более мелких пузырьков в более крупные, что приводит к увеличению размера пузырьков пены. Внешние воздействия, такие как контакт с пеногасителем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и локальный нагрев могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пенопласта, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования с операциями заводнения газом является относительно низкая эффективная плотность пены. (В качестве встречной справки: пены с улучшенными характеристиками, изготовленные с использованием сверхкритического CO 2 может достигать плотности, превышающей плотность некоторых видов сырой нефти.) Низкая плотность имеет положительное значение для пен, используемых как при заводнении для контроля подвижности, так и для блокирования потока жидкости. Низкая эффективная плотность приводит к выборочному размещению пены выше в интервале продуктивного пласта, где наиболее вероятно происходит заводнение газа или добыча газа.

Для технического пояснения: течение пены в пористой среде фактически происходит в виде цепочек пузырьков газа, разделенных ламелями жидкости. Таким образом, строго говоря, течение пены в пористых средах протекает как двухфазное течение — газопузырьковое и жидкостно-пластинчатое. С этой более технически правильной точки зрения именно низкая плотность газовой фазы способствует более предпочтительному размещению пены выше в резервуаре. При заводнении газом, например, паром или CO 2 пены низкой плотности для заводнения, используемые для контроля подвижности, хорошо подходят для решения и уменьшения распространенной проблемы блокировки газа, которая часто препятствует контакту нагнетаемого нефтедобывающего газа с уровнем нефтенасыщенности ниже в вертикальном интервале коллектора. Избирательный контроль подвижности с помощью пены низкой плотности в верхней части коллектора заставит большее количество вытесняющего текучего газа контактировать с нефтенасыщенными участками ниже в коллекторе.

Низкая плотность пены, используемой во время газоблокирующей обработки, приводит к тому, что пена размещается выше в интервале пласта, где наиболее вероятны приток и добыча агрессивного газа. В этом отношении пены для использования в обработках с блокирующими агентами хорошо подходят для решения проблем, связанных с образованием газовых конусов и скоплений газа, возникающих в добывающих скважинах. Кроме того, перерегулирование газа в относительно однородном коллекторе с хорошей вертикальной проницаемостью вызывает избыточную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена низкой плотности способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциального преимущества низкой плотности во время укладки пены в рамках операции по улучшению соответствия необходимо тщательно учитывать относительное влияние сил гравитации и сил вязкости, действующих во время укладки пены. То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который будет испытывать пена во время ее течения и/или размещения в резервуаре.

Режим впрыска

Для впрыска пены, улучшающей соответствие, используется один из трех совершенно разных способов:

  • Последовательный впрыск
  • Совместный впрыск
  • Готовая пена, созданная на поверхности перед инъекцией.

Последовательная закачка предполагает поочередную закачку в нефтяной пласт газовой и водной фаз пены. Совместная закачка включает в себя совместную закачку в пласт газовой и жидкой фаз пены. Из-за существенной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформированных пен, ранние применения пен с улучшенными характеристиками, как правило, включали режим последовательного впрыска или совместного впрыска. Кроме того, последовательный ввод и совместный ввод значительно проще реализовать в полевых условиях. Последовательный впрыск также позволяет избежать проблем с коррозией труб, если газ и пенообразующий раствор образуют коррозионно-активную смесь, такую ​​как CO 2 пены.

Концепция, которая подтверждается лабораторными данными, заключается в том, что в режиме последовательной или совместной закачки пена будет образовываться на месте в основной породе-коллекторе. Поддержкой этого утверждения является ожидание того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию проникать в водный пенообразующий раствор и образовывать пену на месте.

Однако есть два существенных противодействия. Во-первых, по мере того, как газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее проникновение газа и отклонять последующий газовый поток от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образовавшейся пеной. Это явление приводит к неэффективному и неэффективному использованию впрыскиваемых химикатов и жидкостей для пенообразования при производстве пены. Во-вторых, в промежуточных и дальних участках ствола скважины может не хватить механической энергии и/или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов. Это особенно касается пенообразователей пара, азота и природного газа.

Краузе и др. [7] сообщается об обработке пеной в призабойной зоне добывающей скважины, которая применялась на месторождении Прадхо Бэй для снижения избыточного газового фактора, возникающего при добыче повторно закачиваемого природного газа. Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Предполагалось, что последующая добыча газа через введенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте. Вторая обработка по блокированию пенного газа включала последовательную закачку пенообразующего раствора и порцию азота. Ни одна из этих первых двух обработок блокировкой пенного газа не показала снижения ГФ после обработки. Третьей обработкой для блокировки пенного газа была азотная пена с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной добывающей скважины на несколько недель. Эти результаты свидетельствуют о том, что для многих применений пен, улучшающих совместимость с природным газом и азотом, нагнетание пены с использованием предварительно сформированного режима по сравнению с режимом последовательного нагнетания или совместного нагнетания приведет к превосходным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки. Если нет веских аргументов в пользу конкретного применения, то пены для большинства применений около- и промежуточных обработок ствола скважины для улучшения соответствия должны быть предварительно сформированы на поверхности перед закачкой.

При использовании пены CO 2 для контроля подвижности в ходе CO 2 затопление. Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, вызывающую коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 , образование и распространение пены гораздо более осуществимо (чем пены пара, азота или природного газа) при реалистичных градиентах давления в пласте, которые возникают по всему резервуару. [1]

Исследования компьютерного моделирования показали, что оптимальной стратегией закачки для преодоления вытеснения газа во время операций заводнения является попеременная/последовательная закачка отдельных больших порций газа и пенообразующей жидкости при максимально допустимом фиксированном уровне. давление впрыска. [8] Это исследование было ограничено закачкой пены в однородный коллектор и не учитывало какое-либо взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества-переменного газа-улучшения (SAGA) для образования пены, контролирующей подвижность на месте, был предложен для использования при проведении крупномасштабных проектов заводнения WAG в водохранилищах Северного моря. [9]

Ссылки

  1. 1,0 1,1 Россен, В. Р. 1996. Пены при повышении нефтеотдачи. Пены — теория, измерение и применение , Р.К. Изд. Прудомма и С.А. Хана, 413–464. Нью-Йорк: Марсель Деккер Inc.
  2. ↑ Gauglitz, P.A., Friedmann, F., Kam, S.I. et al. 2002. Пенообразование в пористых средах. Представлено на Симпозиуме SPE/DOE по повышению нефтеотдачи, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3.0 3.1 3.2 3.3 3.4 Шрамм Л.Л. и Вассмут Ф. 1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л.Л. Шрамма, 3-45. Вашингтон, округ Колумбия: Достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Ллаве, Ф.М. и Олсен, Д.К. 1994. Использование смешанных поверхностно-активных веществ для образования пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд, М. и Ханссен, Дж. Э. 1999. Пены для контроля газового фактора: демонстрация эффективности процесса пенообразования на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтепромысловой химии, Хьюстон, Техас, 16-19.Февраль 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхардт К., Новосад Дж. Дж. и Шрамм Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн Р.Х., Кюне Д.Л. и другие. 1992. Обработка пеной добывающих скважин для увеличения добычи нефти в Прадхо-Бей. Представлено на Симпозиуме SPE/DOE по повышению нефтеотдачи, Талса, Оклахома, 22-24 апреля 1992. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, В. Р. 2002. Оптимальные стратегии закачки для пенного IOR. Представлено на Симпозиуме SPE/DOE по повышению нефтеотдачи, Талса, Оклахома, 13-17 апреля 2002 г.

    Learn more