Что называют электрической цепью


Электрическая цепь что такое и из каких элементов состоит

Содержание:

Электрическая цепь – это соединение различных электрических или электронных деталей в одно. Для объединения используются проводники, которые пропускают через себя ток. Сами элементы могут самыми разнообразными – линейными, нелинейными, пассивными или активными. Любая электрическая цепь имеет в себе питание, включатель, провода, потребители тока. Она также должна быть замкнутой, иначе ток не сможет по ней протекать. Не являются электрической цепью заземляющие и зануляющие контуры.

В статье будет описано строение как сложных, так и простейших электрических цепей, как их грамотно создать, а главное обеспечить ее безопасность. В качестве дополнения, статья имеет в себе несколько видеороликов и интересный научный материал по теме.

Простейшая электрическая цепь

Основы электрических цепей

Как вода течет по водопроводу (по трубам, через краны, фильтры, счетчики и т.д.), так же электричество течет по цепи (проводам, электрическим и  электронным компонентам, через штекера и гнезда и т. д.). Электричество является одной из нескольких видов энергии, которая при своем течении может высвобождать свет, тепло, звук, радиоволны, механические движения, электромагнитные поля и т.д. Взять любую электротехнику (компьютер, мобильный телефон, электропечь, телевизор и т.д.), вся она содержит в себе электрические схемы, состоящие из различных электрических цепей, по которым течет ток, и на которых присутствует напряжение определенной величины и полярности.

Давайте более подробно разберем, что же собой представляет электрическая цепь, как именно по ней бежит ток. Итак, электрический ток — это упорядоченное движение электрических заряженных частиц. Напомню, что в твердых телах носителями электрического заряда являются электроны (частицы имеющие отрицательный заряд, он же минус). В жидкостях и газах носителями электрического заряда являются ионы (атомы и молекулы, у которых имеется недостаток электронов на своих орбитах, и имеющие положительный заряд, он же плюс). Чаще всего приходится иметь дело именно с движением электронов по электрической цепи именно в твердотельных проводниках (это металлы, кристаллы).

Сложная электрическая цепь

Электрическая цепь это некий замкнутый путь, по которому течет ток, бегут электрически заряженные частицы. Само перемещение этих частиц можно представить следующим образом. Как вам должно быть известно из уроков по физике все вещества состоят из атомов и молекул (мельчайшая частица самого вещества, его структурная составляющая). В твердых состояниях вещества атомы выстроены в определенном порядке, имеют так называемую кристаллическую решетку. У некоторых веществ электроны, что наиболее удалены от центра атома, могут легко отрываться от своего атома и переходить к соседнему. Так получается движение заряженных частиц внутри самого вещества.

Такие вещества являются проводниками электрического тока. Одни это делают хорошо, другие хуже (проводят ток). Если же взять такое вещество как медь (металл), который достаточно хорошо проводит через себя электричество и сделать из нее проволоку, то в итоге мы получим проводник электрического тока определенной длины.

[stextbox id=’alert’]Еще нужен источник тока, который в зависимости от своего принципа действия может на одном своем полюсе создавать переизбыток отрицательного заряда, а на другом — положительного (он же недостаток отрицательного). [/stextbox]

Чтобы пошел ток нужен как бы мостик, соединяющий эти самые противоположные полюса. В роли этого моста, для перехода электрического заряда с одного полюса на другой, и будет выступать замкнутая электрическая цепь, состоящая из различных проводников.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

К примеру, мы просто обычной медной проволокой соединим полюса источника питания. В итоге через проволоку потечет ток (тот самый переизбыток электрических зарядов). Это будет, пожалуй, самой простой электрической цепью, которая может только создавать короткое замыкание этого самого источника питания. Но все же это электрическая цепь. Более полезной электроцепью будет такая схема — источник питания (обычная батарейка), провода, переключатель и лампочка (рассчитанная на напряжение источника питания). Когда мы все это соединим друг за другом (последовательно) мы уже получим электрическую цепь, где течение тока будет приносить пользу в виде излучения света электрической лампочкой.

Естественно, подобными простыми электрическими цепями электротехника не ограничивается. Если правильно подключать различные электрические и электронные компоненты между собой, подсоединяя к ним источник питания, создавая различные функциональные схемы, можно в итоге получать все то разнообразие электроустройств, которое мы сейчас имеем. И все они имеют различные по сложности электрические цепи.

Интересно по теме: Как проверить стабилитрон.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону. Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы.

Первую группу составляют элементы, предназначенные для выработки электроэнергии. Они называются источниками питания.

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками).

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др. ).

Материал по теме: Как подключить конденсатор

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность.

[stextbox id=’info’]Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.[/stextbox]

Электрическая цепь и ее элементы.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи.  Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах.

Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства.

Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением.

Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению.

В этом случае ток в цепи в 2 раза меньше тока короткого замыкания. Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Последовательное соединение элементов цепи

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

I = I1 = I2

А вот напряжение на их концах суммируется:

U = U1 + U2

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

R = R1 + R2

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

U1/U2 = R1/R2

Размыкание трехфазного тока.

Параллельное соединение проводников

Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:

I = I1 + I2

где I — сила тока в неразветвленной цепи.

При параллельном соединении проводников напряжение на них будет одно и то же. Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:

1/R = 1/R1 + 1/R2

Из этого вытекает:

R = R1R2/(R1 + R2)

Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:

I1/I2 = R2/R1

Соединения конденсаторов

У конденсаторов существует также два вида соединения: последовательное и параллельное.

Последовательное соединение. В этом случае обкладка одного конденсатора, заряженная отрицательно, соединена с обкладкой другого конденсатора, заряженного положительно. На рис. 3 показан пример последовательного соединения конденсаторов.

При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:

1/С = 1/С1 + 1/С2 + 1/С3 + …

При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.

Параллельное соединение. При параллельном соединении конденсаторов положительно заряженные обкладки соединены с положительно заряженными, а отрицательно заряженные — с отрицательными (рис. 4).

В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:

С = С1 + С2 + С3 + …

Соединения источников тока

При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.

При последовательном соединении источников тока два соседних источника соединяются между собой противоположными полюсами. Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника.

[stextbox id=’alert’]Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.[/stextbox]

Расчет электрических цепей

Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников.  Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 … R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается). Следует вычислить силу токов I1, I2, … I6.

В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R”. А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:

R = R1 + R’ + R”

где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R” — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R”:

1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R” = 1/R5 + 1/R6

Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:

I = U/R

Из всего вышеизложенного можно вывести, что I = I1.

Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:

U1 = IR1; U2 = IR’; U3 = IR”

Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.

Электроцепь

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Устройство электрической цепи

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами. Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток.

Задачу решает электронный блок на основе инвертора. Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

https://www.youtube.com/watch?v=rsDnlddk8ds

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Заключение

Рейтинг автора

Написано статей

Электрическая цепь представляет собой группу заранее изготовленных элементов, соединенных определенным образом и предназначенных для протекания по ним электрического тока. Разница между активными и пассивными элементами электрической цепи заключается в следующем – активные элементы способны самостоятельно создавать в цепи ток, а пассивные могут только потреблять или накапливать электрическую энергию. Более подробно о создании, строении электроцепей можно узнать из материала Учебное пособие по электротехнике.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrohobby.ru

www.mukhin.ru

www.websor. rul

www.vashtehnik.ru

Предыдущая

ТеорияЧему равна электроемкость конденсатора?

Следующая

ТеорияЧто такое короткое замыкание

Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Элементами электрической цепи являются: источник тока, нагрузка и проводники. Простейшая электрическая цепь показана на рисунке 1.

Рисунок 1. Простейшая электрическая цепь.

В состав электрической цепи могут входить и другие элементы, таки как устройства коммутации, устройства защиты.

Как известно, для возникновения тока необходимо соединить две точки, одна из которых имеет избыток электронов в сравнении с другой. Другими словами необходимо создать разность потенциалов между этими двумя точками. Как раз для создания разности потенциалов в цепи применяется источник тока. Источником тока в электрической цепи могут быть такие устройства, как генераторы, батареи, химические элементы и т.д.

Нагрузкой в электрической цепи считается любой потребитель электрической энергии. Нагрузка оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника тока к нагрузке течет по проводникам. В качестве проводников стараются использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Важно, что для протекания тока в цепи, цепь должна быть замкнута!

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т. д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Что такое электрическая цепь? Типы цепей и сетей

Содержание

Что такое электрическая цепь?

Электрическая цепь представляет собой сеть с замкнутым контуром, которая обеспечивает обратный путь для протекания тока. Или замкнутый проводящий путь, по которому может течь ток, называется цепью. Электрическая цепь также известна как электрическая сеть или электрическая цепь .

Электрическая цепь представляет собой комбинацию различных активных и пассивных компонентов, таких как резисторы, конденсаторы, катушки индуктивности, диоды, транзисторы и т. д., которые образуют электрическую сеть. В замкнутой цепи электрический ток течет от источника (например, батареи) в проводящем материале (например, проводах и кабелях) к нагрузке (например, лампочке) и, следовательно, возвращается обратно к источнику.

Что такое электронные схемы?

Электронная схема — это тип электрической цепи, состоящей из множества электронных компонентов, таких как диоды, транзисторы, резисторы, конденсаторы и т. д., где в цепи должен присутствовать хотя бы один активный компонент, что еще больше отличает ее от электрической цепи. Таким образом, он называется электронной схемой, а не электрической схемой.

Что такое электрическая сеть?

Совокупность различных электрических элементов и компонентов, соединенных любым способом (простой или сложной конфигурации), называется электрической сетью. Это тот же термин, который используется для электрической цепи, но чаще всего ассоциируется со сложными сетями, которые решаются с помощью сетевых теорем.

Сложные сети

Цепь, которая содержит множество электрических элементов, таких как резисторы, конденсаторы, катушки индуктивности, источники тока и напряжения (как переменного, так и постоянного), где все компоненты и элементы цепи имеют сложную конфигурацию, называется сложной сетью. Такие сети не могут быть легко решены с помощью простого закона Ома или законов Кирхгофа. Если да, то количество уравнений будет заметно больше.

Самый простой способ решить и проанализировать сложную сеть — это использовать специальные методы, такие как сетевые теоремы, т. е. теорема Нортона, теорема Тевенина, теорема о суперпозиции, преобразование звезда-дельта, анализ цепей суперузлов и суперсеток и т. д.

Типы электрических цепей

Существует множество типов электрических цепей , например:

  • Разомкнутая цепь
  • Замкнутая цепь
  • Короткое замыкание
  • Цепь серии
  • Параллельная цепь
  • Последовательно-параллельная схема
  • Цепь звезда-треугольник
  • Цепь переменного тока
  • Цепь постоянного тока
  • Однофазная цепь
  • Трехфазная цепь
  • Резистивная цепь
  • Индуктивная цепь
  • Емкостная цепь
  • Резистивная, индуктивная (цепь RL)
  • Резистивная, емкостная (цепь RC)
  • Емкостный, индуктивный (LC-цепи)
  • Резистивная, индуктивная, емкостная (цепь RLC)
  • Линейная цепь
  • Нелинейная цепь
  • Односторонние цепи
  • Двусторонние цепи
  • Активная цепь
  • Пассивная цепь

Мы кратко обсудим один за другим следующим образом.

Разомкнутая цепь

Цепь, в которой нет обратного пути для протекания тока (т. е. незамкнутая), называется разомкнутой цепью. Другими словами, цепь, в которой напряжение стремится к ЭДС ( порождает источник) и ток вообще не течет, называется разомкнутой цепью.

Пример разомкнутой цепи: Цепь с разомкнутым выключателем или перегоревшим предохранителем, в которой лампочка подключена к аккумулятору. Таким образом, лампочка не будет светиться, поскольку цепь не замкнута, т. Е. Это разомкнутая цепь, и в ней нет тока.

Замкнутая цепь

Цепь, имеющая обратный путь для протекания тока (т. е. замкнутая цепь), называется замкнутой цепью.

Пример короткого замыкания: Цепь с замкнутым выключателем, в которой лампочка подключена к аккумулятору. Таким образом, лампочка светится, поскольку ток течет по нити накала лампочки из-за замкнутой цепи.

Короткое замыкание

Цепь, имеющая обратный путь для протекания тока, где значение сопротивления равно нулю. (т. е. завершенная или замкнутая цепь без подключенной нагрузки) называется коротким замыканием. Другими словами, схема, в которой напряжение стремится к нулю, а ток стремится к бесконечности называется коротким замыканием.

Пример короткого замыкания: Цепь с замыкающим выключателем без нагрузки, подключенной к напряжению питания. Другими словами, когда фазный или линейный провод касается нейтрального провода без нагрузки между ними. В этом случае перегорает предохранитель или срабатывает автоматический выключатель. При отсутствии надлежащей защиты короткое замыкание может повредить прибор или стать причиной очень серьезной травмы.

  • Связанный пост: Токи короткого замыкания и симметричные составляющие
Серийная цепь

В этой цепи все электрические элементы (источники напряжения или тока, катушки индуктивности, конденсаторы, резисторы и т. д.) соединены последовательно, т. е. существует только один путь для прохождения электричества, например, это одноветвевые цепи.

Параллельная цепь

В этой цепи все электрические элементы (источники напряжения и тока, катушки индуктивности, конденсаторы, резисторы и т.д.) соединены параллельно, т.е. существует множество путей для прохождения электричества и минимальное количество ветвей в этой цепи два.

Последовательно-параллельная цепь

Если элементы цепи соединены последовательно в одних частях и параллельно в других, это будет последовательно-параллельная цепь. Другими словами, это сочетание последовательных, параллельных и последовательно-параллельных цепей.

Ниже приведены более производные схемы последовательных, параллельных и последовательно-параллельных цепей

  • Чистая резистивная цепь
  • Чистая индуктивная цепь
  • Чисто емкостная схема
  • Резистивная, индуктивная цепь, т. е. цепь RL
  • Резистивная, емкостная цепь, например, RC-цепь
  • Емкостные, индуктивные цепи, т. е. LC-цепи
  • Резистивная, индуктивная, емкостная цепь, т. е. цепь RLC
  • Серийные и параллельные цепи R, L и C
  • Комбинация последовательно-параллельной цепи, т.е. сложная цепь

Все эти схемы показаны на рис. ниже.

Нажмите на картинку, чтобы увеличить

Различные типы электрических цепей

В данных цепях все указанные выше компоненты или элементы могут быть соединены последовательно, параллельно или в обеих комбинациях последовательно-параллельной конфигурации.

Related Posts:

  • Знакомство с последовательными, параллельными и последовательно-параллельными соединениями
  • Серия, параллельное и последовательно-параллельное соединение батарей
  • Серия
  • , параллельное и последовательно-параллельное соединение солнечных панелей
Схема «звезда-треугольник»

Цепи такого типа подключаются по схеме «звезда» или «треугольник». В этих цепях электрические элементы соединены способом, который не определен с точки зрения последовательной, параллельной или последовательно-параллельной конфигурации. Цепи «звезда-треугольник» могут быть решены путем преобразования «звезда в треугольник» и «треугольник в звезду».

Прежде чем анализировать электрическую цепь и сеть, вы должны знать следующие полезные термины, связанные с электрическими цепями, которые определяют характер и характеристики цепи.

Цепь переменного тока

Цепь, содержащая источник питания переменного тока, называется цепью переменного тока. Источниками питания, например, являются генераторы переменного тока и синхронные генераторы.

Цепь постоянного тока

Цепь, содержащая источник питания постоянного тока, называется цепью постоянного тока. Источниками питания, например, являются батареи и генераторы постоянного тока.

  • Связанный пост: Разница между переменным и постоянным током (ток и напряжение)
Однофазные цепи

Электропитание переменного тока, в котором все напряжения имеют одинаковую синусоидальную форму в определенный период времени, называется однофазным питанием переменного тока. В однофазных цепях переменного тока для замыкания цепи необходимы только два провода (известные как фаза или линия и нейтраль).

Многофазные цепи

Поли означает более одного. Как следует из названия, мощность переменного тока, в которой есть три синусоидальных напряжения, имеющих разность фаз 120°. В трехфазных цепях переменного тока для замыкания цепи необходимы три фазы с тремя проводами или три фазы с четырьмя проводами.

  • Связанная запись: Разница между однофазным и трехфазным питанием

Параметры цепи, константы и родственные термины

Различные компоненты или элементы, которые используются в электрических цепях, называются параметрами или константами цепи, т. е. сопротивление, емкость, индуктивность, частота и т. д. Эти параметры могут быть объединены или распределены.

Активная цепь

Цепь, которая содержит один или несколько источников ЭДС (электродвижущей силы), называется активной цепью

Пассивная цепь

Цепь, в которой нет ни одного источника ЭДС, называется пассивной цепью

  • Связанный пост: Основное различие между активными и пассивными компонентами
Линейные и нелинейные цепи
Li ближняя Цепь

Линейная цепь — это электрическая цепь, в которой параметры цепи (сопротивление, индуктивность, емкость, форма волны, частота и т. д.) постоянны. Другими словами, цепь, параметры которой не изменяются по току и напряжению, называется линейной цепью.

Нелинейная цепь

Нелинейная цепь представляет собой электрическую цепь, параметры которой варьируются в зависимости от тока и напряжения. Другими словами, электрическая цепь, в которой параметры цепи (сопротивление, индуктивность, емкость, форма волны, частота и т. д.) непостоянны, называется нелинейной цепью.

  • Связанный пост: Основная разница между линейной и нелинейной схемой

Односторонние и двусторонние цепи
Односторонние цепи

В односторонних цепях свойства цепи изменяются при изменении направления питающего напряжения или тока. Другими словами, односторонняя цепь позволяет току течь только в одном направлении. Диод или выпрямитель являются примером односторонней схемы, потому что они не выполняют выпрямление в обоих направлениях питания.

Двусторонние цепи

В двусторонних цепях свойство цепи не меняется при изменении направления питающего напряжения или тока. Другими словами, двусторонняя цепь позволяет току течь в обоих направлениях. Линия передачи является лучшим примером двусторонней цепи, потому что при подаче напряжения питания с любого направления (начальный или конечный конец) свойства цепи остаются постоянными.

  • Связанный пост: Разница между односторонней и двусторонней схемами

Термины, относящиеся к электрическим цепям и сетям
Узел

Точка или соединение, где встречаются два или более элементов цепи (резистор, конденсатор, катушка индуктивности и т. д.), называется узлом участок цепи, расположенный между двумя узлами, называется ветвью. В ответвлении могут быть соединены один или несколько элементов, имеющих две клеммы.

Л уп

Замкнутый путь в цепи, где может встречаться более двух сеток, называется петлей, т. е. в петле может быть много сеток, но сетка не содержит ни одной петли.

Сетка

Замкнутая петля, которая не содержит внутри себя никакой другой петли или путь, который не содержит других путей, называется сеткой.

  • Связанный пост: Как определить количество узлов, ветвей, петель и сеток в цепи?
Цепь с 6 узлами, 7 ветвями, 3 петлями и 2 сетками

Полезно знать:

Мы используем различные теоремы для решения сложных сетей. Как правило, сложные сети могут быть решены следующими двумя методами.

  • Прямой метод
  • Метод эквивалентной схемы

Мы подробно обсудим эти методы один за другим в нашем следующем посте.

Related Posts:

  • Что такое электрический ток, его единицы, формула, типы и применение
  • Что такое напряжение? его единица измерения, формула, типы и применение
  • Что такое сопротивление? Удельное сопротивление (ρ) и удельное сопротивление Ω.
  • Что такое электроэнергия? Виды электроэнергии и их единицы
  • Что такое электрическая энергия? Его устройство, формула и применение
  • Что такое электричество? Типы, источники и производство электроэнергии
  • Что такое вольт (В)? Блок электротехники и физики
  • Что такое Ампер (А)? Блок электротехники и физики

Что такое электрическая цепь?

Электрическая цепь представляет собой взаимосвязь электрических компонентов. Электрическая цепь состоит из батарей, резисторов, катушек индуктивности, конденсаторов, переключателей или транзисторов. Электрическая сеть состоит из замкнутого контура. Цепь — это замкнутый путь, по которому электроны текут по проводу. Пока медная проволока предоставлена ​​самой себе, электроны дрейфуют между атомами, но никогда не покидают медь.

Однако, когда мы подключаем этот медный провод к батарее, свободные электроны устремляются к положительной клемме батареи. Эта толкающая сила называется Электродвижущая сила (ЭДС). Э.М.Ф. выражается в вольтах. Обычно его называют напряжением. В результате этого напряжения происходит движение электрона. Это движение известно как электронный ток или электрический ток . Мы можем измерить ток, подключив амперметр между медным проводом и источником напряжения.

Полная цепь представляет собой бесконечную петлю электронов. Если мы возьмем проволоку и накинем на нее петлю, она образует непрерывный путь, по которому электроны могут течь вечно. Это основное понятие цепи.

Электрическая цепь в основном состоит из

  • Электрических источников, которые обеспечивают напряжение и ток, такие как батареи. Они являются источником электронов.
  • Переключатели, резисторы, потенциометры, конденсаторы, используемые для управления электричеством.
  • Устройства защиты в цепях высокого напряжения. Это автоматический выключатель, предохранитель и т. д.
  • Провода, по которым проходит электрический ток от одной точки цепи к другой.
  • Нагрузкой в ​​цепи может быть двигатель, светодиод, лампа и т. д.

Существуют некоторые основные свойства электрических цепей, а именно:

  • Цепь всегда представляет собой замкнутый путь.
  • Цепь всегда состоит из источника энергии,
  • Направление тока от положительной клеммы к отрицательной клемме источника.
  • Направление потока электронов от отрицательной клеммы к положительной клемме источника.

1 Принципиальная электрическая схема

2 Типы цепей

Принципиальная схема

Принципиальная схема представляет собой визуальное отображение электрической цепи. В основном есть два типа принципиальных схем:

  1. Иллюстрированные: Иллюстрированные схемы создаются с использованием основных изображений. Этот тип диаграммы дает визуальное представление для аудитории, которая менее техническая.
Наглядная принципиальная схема
  1. Схема: Эти схемы нарисованы с использованием стандартных промышленных символов. Эти схемы используются для представления схемы электрику или любой другой технической аудитории.
Схема

Символы принципиальных схем

Для принципиальных схем используются сотни символов. Некоторые основные символы:

Имя Символ
Резистор
Конденсатор
Сотовый
Аккумулятор
Светодиод

Предположим, мы хотим нарисовать простую схему, в которой батарея подключена к светодиоду таким образом, что положительная клемма батареи подключена к положительной клемме светодиода, а отрицательная клемма батареи подключена к отрицательной клемме светодиода. Тогда это может быть представлено как:

Типы цепей

Существует три основных типа цепей:

  1. Обрыв цепи

Если в простой цепи отключена одна клемма, то ток по этой цепи не течет. Это называется разомкнутой цепью или отсутствием нагрузки.

 

Обрыв цепи
  1. Замкнутая цепь

Электрическая цепь имеет источник ЭДС и нагрузку. Эта нагрузка действует как путь проводника. Если ток протекает через нагрузку, это считается замкнутой цепью. Если в простой цепи ток может течь от одного вывода батареи к другому без прерывания, говорят, что цепь замкнута.

Замкнутая цепь
  1. Короткое замыкание

Если положительная клемма батареи напрямую соединена с отрицательной клеммой без какого-либо сопротивления между ними, говорят о коротком замыкании.

Короткое замыкание

Помимо вышеперечисленных цепей, компоненты электрической цепи могут быть расположены двумя различными способами: при последовательном соединении и при параллельном соединении.

Последовательная цепь

Если в цепи компоненты соединены последовательно, то цепь называется последовательной цепью. В последовательной цепи ток через каждый компонент одинаков, а подаваемое напряжение равно сумме напряжений на каждом компоненте. Если провод соединяет батарею с одной лампой, со следующей лампой, а затем обратно с батареей, говорят, что лампы соединены последовательно.

Последовательное соединение двух ламп
Параллельная цепь

Если в цепи компоненты соединены параллельно, то такая цепь называется параллельной. В параллельной цепи напряжение на каждом компоненте будет одинаковым, а общий приложенный ток равен сумме токов через каждый компонент. Если к аккумулятору подключена лампа, а другая лампа подключена в отдельный шлейф с первой лампой, то лампа подключается параллельно.

Параллельное соединение двух ламп

Здесь напряжение на каждой лампочке будет таким же, как напряжение, подаваемое батареей. Ток через каждую лампу будет разделен, значит, если мы применим 5 А к цепи, 5 А будет током, протекающим через каждую лампу.


Learn more