Диоды это
Диод - Виды, характеристики, параметры диодов
Что такое диод
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
обратный клапан
Диод — это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
строение диодаПолупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диодаКак определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диодаТак как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частотОсциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
синусоидальный сигнал
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
переменное напряжение после диода
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
переменый ток после диода
Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.
переменный ток после диодаНичего себе! Диод срезал только положительную часть синусоиды!
[quads id=1]
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр — это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор — (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты — одна из разновидностей диодных сборок.
На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Приобрести диоды можно тут.
Очень интересное видео про диод
Похожие статьи по теме «диод»
Как работает стабилитрон
Диод Шоттки
Диодный мост
Как проверить диод и светодиод мультиметром
Как проверить тиристор
Схема для проверки тиристоров
Диоды.
Устройство и работа. Характеристики и особенностиСамым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.
Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.
Диод состоит из следующих основных элементов:
- Корпус. Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
- Катод. Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
- Подогреватель. Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
- Анод. Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
- Кристалл. Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.
Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.
Принцип действияРабота диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.
Диоды в состоянии покояЕсли диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.
Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».
Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.
Обратное включениеЕсли диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.
При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.
Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.
Обратный токВспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.
При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.
Прямое включениеПоменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.
Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.
При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.
Прямое и обратное напряжениеВо время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.
Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.
Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.
Характеристика диодовХарактеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.
Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.
Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.
На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.
Похожие темы:
- Диоды (часть 2). Виды и особенности. Основные неисправности
- Тиристоры. Виды и устройство. Работа и применение. Особенности
- Свойства полупроводников. Устройство и работа. Применение
- Светодиоды. Виды и устройство. Работа и применение. Особенности
- Фотодиоды. Виды и устройство. Работа и характеристики
- Сверхяркие светодиоды. Типы и устройство. Работа и применение
- Лазерный диод. Виды. Устройство и работа. Подключение
Диод | Определение, символ, типы и использование
характеристики p-n перехода
Смотреть все СМИ
- Ключевые люди:
- Ник Холоньяк-младший
- Похожие темы:
- электронная лампа выпрямитель катод анод фотокатод
См. все связанные материалы →
Диод , электрический компонент, пропускающий ток только в одном направлении. На принципиальных схемах диод изображается треугольником с линией, проходящей через одну вершину.
Наиболее распространенный тип диода использует соединение p - n . В этом типе диода один материал ( n ), в котором электроны являются носителями заряда, граничит со вторым материалом ( p ), в котором дырки (места, обедненные электронами, которые действуют как положительно заряженные частицы) действуют как носители заряда. На их границе образуется обедненная область, через которую диффундируют электроны, заполняя дырки на стороне p . Это останавливает дальнейший поток электронов. Когда этот переход смещен в прямом направлении (т. е. положительное напряжение приложено к p -сторона), электроны могут легко перемещаться по переходу, заполняя отверстия, и через диод протекает ток. Когда переход смещен в обратном направлении (т. е. к стороне p приложено отрицательное напряжение), обедненная область расширяется, и электроны не могут свободно проходить через нее. Ток остается очень малым до тех пор, пока не будет достигнуто определенное напряжение (напряжение пробоя), после чего ток резко возрастет.
Светоизлучающие диоды (СИД) представляют собой p - n переходы, излучающие свет при протекании через них тока. Несколько p - n диоды могут быть соединены последовательно для получения выпрямителя (электрического компонента, преобразующего переменный ток в постоянный). Стабилитроны имеют четко определенное напряжение пробоя, так что при этом напряжении ток течет в обратном направлении, и постоянное напряжение может поддерживаться, несмотря на колебания напряжения или тока. В варакторных (или варикапных) диодах изменение напряжения смещения вызывает изменение емкости диода; эти диоды имеют множество применений для передачи сигналов и используются в радио- и телеиндустрии. (Подробнее об этих и других типах диодов см. см. полупроводниковое устройство.)
Ранние диоды представляли собой вакуумные трубки, вакуумированные стеклянные или металлические электронные трубки, содержащие два электрода — отрицательно заряженный катод и положительно заряженный анод. Они использовались в качестве выпрямителей и детекторов в электронных схемах, таких как радио- и телевизионные приемники. Когда к аноду (или пластине) прикладывается положительное напряжение, электроны, испускаемые нагретым катодом, текут к пластине и возвращаются к катоду через внешний источник питания. Если к пластине приложено отрицательное напряжение, электроны не могут покинуть катод, и ток пластины не течет. Таким образом, диод позволяет электронам течь от катода к пластине, но не от пластины к катоду. Если к пластине приложено переменное напряжение, ток течет только в то время, когда пластина положительна. Переменное напряжение называют выпрямленным или преобразованным в постоянный ток.
Эта статья была недавно пересмотрена и обновлена Эриком Грегерсеном.
Диоды — SparkFun Learn
Авторы: Джимблом
Избранное Любимый 69
Введение
После того, как вы закончите с простыми пассивными компонентами, такими как резисторы, конденсаторы и катушки индуктивности, пришло время вступить в удивительный мир полупроводников. Одним из наиболее широко используемых полупроводниковых компонентов является диод.
В этом уроке мы рассмотрим:
- Что такое диод!?
- Теория работы диода
- Важные свойства диода
- Различные типы диодов
- Как выглядят диоды
- Типичные области применения диодов
Рекомендуемая литература
Некоторые понятия в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотреть) эти:
.Что такое цепь?
Каждый электрический проект начинается со схемы. Не знаете, что такое цепь? Мы здесь, чтобы помочь.
Избранное Любимый 79
Что такое электричество?
Мы можем видеть электричество в действии на наших компьютерах, освещая наши дома, как удары молнии во время грозы, но что это такое? Это не простой вопрос, но этот урок прольет на него свет!
Избранное Любимый 82
Как пользоваться мультиметром
Изучите основы использования мультиметра для измерения непрерывности, напряжения, сопротивления и силы тока.
Избранное Любимый 65
Хотите изучить различные диоды?
Мы вас прикроем!
Комплект деталей для начинающих SparkFun
Осталось всего 12! КОМПЛЕКТ-13973
18,50 $
12
Избранное Любимый 83
Список желаний
Комплект дискретных полупроводников SparkFun
В наличии КОМПЛЕКТ-13682
12,95 $
6
Избранное Любимый 62
Список желаний
Диодный выпрямитель - 1А, 50В (1N4001)
В наличии COM-08589
1
Избранное Любимый 13
Список желаний
Диодный выпрямитель - 1А, 400В (1N4004)
В наличии COM-14884
$0,25 0,06 доллара США
Избранное Любимый 5
Список желаний
Посмотреть все диоды
Идеальные диоды
Основная функция идеального диода состоит в управлении направлением протекания тока. Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, блокируется. Они как односторонний клапан электроники.
Если напряжение на диоде отрицательное, ток не может течь*, и идеальный диод выглядит как разомкнутая цепь. В такой ситуации говорят, что диод выкл. или обратное смещение .
Пока напряжение на диоде не отрицательное, он «включается» и проводит ток. В идеале* диод действовал бы как короткое замыкание (на нем 0 В), если бы он проводил ток. Когда диод проводит ток, он имеет прямое смещение (жаргон электроники для «вкл»).
Зависимость тока от напряжения идеального диода. Любое отрицательное напряжение создает нулевой ток — разомкнутая цепь. Пока напряжение неотрицательно, диод выглядит как короткое замыкание.
Ideal Diode Characteristics | ||
Operation Mode | On (Forward biased) | Off (Reverse biased) |
---|---|---|
Current Through | I>0 | I=0 |
Напряжение на | В=0 | В |
Внешний вид диода | Короткое замыкание | Обрыв цепи |
Символ цепи
Каждый диод имеет0021 две клеммы -- соединения на каждом конце компонента -- и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные. Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, по какому пути течет ток через диод, постарайтесь запомнить мнемонику 9.0025 ACID : "анодный ток в диоде" (также анод-катод - это диод ).
Символ цепи стандартного диода представляет собой треугольник, упирающийся в линию. Как мы рассмотрим позже в этом уроке, существует множество типов диодов, но обычно их схема выглядит примерно так:
Клемма, входящая в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником/стрелкой, но не может двигаться в обратном направлении.
Выше приведена пара простых диодных схем. Слева диод D1 смещен в прямом направлении и позволяет току течь по цепи. По сути это похоже на короткое замыкание. Справа диод D2 смещен в обратном направлении. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.
*Внимание! Звездочка! Не совсем так... К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно реальны, просто у них есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель...
Реальные характеристики диода
В идеале , диоды будут блокировать любой и весь ток, протекающий в обратном направлении, или просто действовать как короткое замыкание, если ток течет в прямом направлении. К сожалению, фактическое поведение диода не совсем идеально. Диоды потребляют некоторое количество энергии при проведении прямого тока, и они не блокируют весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.
Зависимость ток-напряжение
Наиболее важной характеристикой диода является его зависимость ток-напряжение ( i-v ). Это определяет, каков ток, протекающий через компонент, с учетом того, какое напряжение измеряется на нем. Резисторы, например, имеют простую линейную зависимость i-v ... Закон Ома. Однако кривая i-v диода полностью не -линейна. Это выглядит примерно так:
Зависимость тока от напряжения диода. Чтобы преувеличить некоторые важные моменты сюжета, шкалы как в положительной, так и в отрицательной половинах не равны.
В зависимости от приложенного к нему напряжения диод будет работать в одной из трех областей:
- Прямое смещение : Когда напряжение на диоде положительное, диод «включен» и через него может протекать ток. Напряжение должно быть больше, чем прямое напряжение (V F ), чтобы ток был значительным.
- Обратное смещение : Это режим «выключения» диода, при котором напряжение меньше, чем V F , но больше, чем -V БР . В этом режиме протекание тока (в основном) блокировано, а диод выключен. Очень небольшой ток (порядка нА) — называемый обратным током насыщения — может протекать в обратном направлении через диод.
- Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.
Прямое напряжение
Для того, чтобы "включить" и провести ток в прямом направлении, к диоду необходимо приложить определенное положительное напряжение. Типичное напряжение, необходимое для включения диода, называется прямое напряжение (V F ). Его также можно назвать напряжением включения или напряжением включения .
Как мы знаем из кривой i-v , ток через диод и напряжение на диоде взаимозависимы. Больше ток - больше напряжение, меньше напряжение - меньше ток. Однако, как только напряжение приближается к номинальному прямому напряжению, большое увеличение тока должно означать лишь очень небольшое увеличение напряжения. Если диод является полностью проводящим, обычно можно предположить, что напряжение на нем является номинальным прямым напряжением.
Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.
V F конкретного диода зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет V F около 0,6-1V . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет определенное значение для определения прямого падения напряжения; светодиоды могут иметь гораздо большее V F , в то время как диоды Шоттки специально разработаны для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.
Напряжение пробоя
Если к диоду приложено достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства обычных диодов не очень полезно подвергать их воздействию больших отрицательных напряжений.
Для обычных диодов это напряжение пробоя составляет от -50 до -100 В или даже более отрицательное.
Техническое описание диода
Все вышеперечисленные характеристики должны быть подробно описаны в техническом описании каждого диода. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):
, чтобы уточнить, как ведет себя диод. Этот график из таблицы данных диода увеличивает извилистую часть прямой области i-v кривая. Обратите внимание, что больший ток требует большего напряжения:
На этой диаграмме указана еще одна важная характеристика диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенную мощность, прежде чем они перегорят. Для всех диодов должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если на диод действует большее напряжение или ток, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится и т. д.).
Некоторые диоды хорошо подходят для высоких токов — 1 А и более — другие, такие как слабосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.
Этот 1N4148 — всего лишь небольшая выборка из всех существующих диодов различных типов. Далее мы рассмотрим, какое удивительное разнообразие диодов существует и для чего служит каждый тип.
Типы диодов
Обычные диоды
Сигнальные диоды
Стандартные сигнальные диоды являются одними из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный номинальный ток. Типичным примером сигнального диода является 1N4148.
Диод слабого сигнала - 1N4148
В наличии COM-08588
Избранное Любимый 10
Список желаний
Очень общего назначения, имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.
Малосигнальный диод 1N4148. Обратите внимание на черный кружок вокруг диода, который указывает, какой из выводов является катодом.
Силовые диоды
Выпрямитель или силовой диод — это стандартный диод с гораздо более высоким максимальным номинальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения. 1N4001 является примером силового диода.
Диодный выпрямитель - 1А, 50В (1N4001)
В наличии COM-08589
1
Избранное Любимый 13
Список желаний
1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.
Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.
И, конечно же, большинство типов диодов также доступны для поверхностного монтажа. Вы заметите, что каждый диод каким-то образом (независимо от того, насколько он крошечный или трудноразличимый) указывает, какой из двух контактов является катодом.
Светоизлучающие диоды (СИД!)
Самым ярким представителем семейства диодов должен быть светоизлучающий диод (СИД). Эти диоды буквально загораются при подаче положительного напряжения.
Несколько сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.
Как и обычные диоды, светодиоды пропускают ток только в одном направлении. Они также имеют номинальное прямое напряжение, то есть напряжение, необходимое для того, чтобы они загорелись. В F номинал светодиода обычно больше, чем у обычного диода (1,2~3 В), и зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение суперярко-синего светодиода составляет около 3,3 В, а суперярко-красного светодиода того же размера — всего 2,2 В.
Очевидно, светодиоды чаще всего используются в осветительных приборах. Они шустрые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, задней подсветке и многом другом. Другие светодиоды излучают свет, невидимый человеческому глазу, например, инфракрасные светодиоды, составляющие основу большинства пультов дистанционного управления. Еще одно распространенное использование светодиодов - оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание, как схематическое обозначение диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, отходящих от символа.
Диоды Шоттки
Другим очень распространенным диодом является диод Шоттки.
Диод Шоттки
В наличии COM-10926
1
Избранное Любимый 12
Список желаний
Полупроводниковый состав диода Шоттки немного отличается от обычного диода, в результате чего значительно0021 меньшее прямое падение напряжения , которое обычно составляет от 0,15 В до 0,45 В. Однако они все равно будут иметь очень большое напряжение пробоя.
Диоды Шоттки особенно полезны для ограничения потерь, когда каждый бит напряжения должен быть сохранен. Они достаточно уникальны, чтобы получить собственный символ цепи с парой изгибов на конце катодной линии.
Стабилитроны
Стабилитроны — странный изгой семейства диодов. Они обычно используются намеренно провести обратный ток .
Стабилитрон - 5,1 В 1 Вт
Пенсионер COM-10301
Пенсионер
Избранное Любимый 10
Список желаний
Стабилитроны рассчитаны на очень точное напряжение пробоя, называемое пробивным напряжением стабилитрона или напряжением стабилитрона . Когда через стабилитрон протекает в обратном направлении достаточный ток, падение напряжения на нем будет оставаться постоянным при напряжении пробоя.
Используя свойство пробоя, стабилитроны часто используются для создания известного эталонного напряжения, точно равного их напряжению Зенера. Их можно использовать в качестве стабилизатора напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, потребляющих значительный ток.
Зенеры достаточно особенные, чтобы иметь свой собственный символ цепи с волнистыми концами на катодной линии. Символ может даже определять, каково именно напряжение стабилитрона диода. Вот 3,3-вольтовый стабилитрон, создающий надежное опорное напряжение 3,3 В:
Фотодиоды
Фотодиоды — это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квант) для генерации электрического тока. Вид работы как анти-светодиод.
Миниатюрная солнечная батарея — BPW34
В наличии ПРТ-09541
1
Избранное Любимый 36
Список желаний
Фотодиод BPW34 (не четверть, мелочь сверху). Поместите его под солнце, и он может генерировать около нескольких мкВт энергии!
Солнечные батареи являются главным спонсором фотодиодной технологии. Но эти диоды также можно использовать для обнаружения света или даже оптической связи.
Применение диодов
Для такого простого компонента диоды имеют огромное количество применений. Практически в каждой схеме вы найдете диод того или иного типа. Они могут использоваться во всем, от слабосигнальной цифровой логики до высоковольтной схемы преобразования энергии. Давайте рассмотрим некоторые из этих приложений.
Выпрямители
Выпрямитель представляет собой цепь, которая преобразует переменный ток (AC) в постоянный ток (DC). Это преобразование имеет решающее значение для всех видов бытовой электроники. Сигналы переменного тока выходят из настенных розеток вашего дома, но постоянный ток питает большинство компьютеров и другой микроэлектроники.
Ток в цепях переменного тока буквально чередуется с -- быстро переключается между работой в положительном и отрицательном направлениях -- но ток в сигнале постоянного тока течет только в одном направлении. Поэтому для преобразования переменного тока в постоянный вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Звучит как работа для ДИОДОВ!
Однополупериодный выпрямитель может состоять всего из одного диода. Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.
Входной (красный/левый) и выходной (синий/правый) кривые напряжения после прохождения через схему однополупериодного выпрямителя (в центре).
Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования отрицательных скачков в сигнале переменного тока в положительные.
Схема мостового выпрямителя (в центре) и форма выходного сигнала, которую она создает (синий/справа).
Эти схемы являются важным компонентом в источниках питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока настенной розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. д. Если вы разорвете настенную бородавку, вы, скорее всего, увидите там несколько диодов, исправляющих ее.
Можете ли вы найти четыре диода, образующих мостовой выпрямитель в этой настенной бородавке?
Защита от обратного тока
Вы когда-нибудь вставляли батарейку неправильно? Или поменять местами красный и черный провода питания? Если это так, диод может быть благодарен за то, что ваша схема все еще жива. Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает на вашу цепь только положительное напряжение.
Этот диод полезен, когда разъем источника питания неполяризован, что позволяет легко перепутать и случайно соединить отрицательный источник питания с положительным входной цепи.
Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения. Это делает диоды Шоттки отличным выбором для диодов обратной защиты.
Логические элементы
Забудьте о транзисторах! Простые цифровые логические элементы, такие как И или ИЛИ, могут быть построены из диодов.
Например, диодный вентиль ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также расположен в этом узле. Всякий раз, когда один из входов (или оба) имеет логическую 1 (высокий уровень/5 В), выход также становится логической 1. Когда на оба входа подается логический 0 (низкий уровень/0 В), на выходе устанавливается низкий уровень через резистор.
Логический элемент И устроен аналогичным образом. Аноды обоих диодов соединены вместе, где находится выход схемы. Оба входа должны иметь логическую 1, заставляющую ток течь к выходному контакту и также подтягивать его к высокому уровню. Если на любом из входов низкий уровень, ток от источника питания 5 В проходит через диод.
Для обоих логических элементов можно добавить больше входов, добавив всего один диод.
Обратноходовые диоды и подавление скачков напряжения
Диоды очень часто используются для ограничения потенциального ущерба от неожиданных больших скачков напряжения. Диоды подавления переходного напряжения (TVS) — это специальные диоды, похожие на стабилитроны — с низким напряжением пробоя (часто около 20 В), но с очень большой номинальной мощностью (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.
Обратноходовые диоды выполняют аналогичную работу по подавлению скачков напряжения, особенно тех, которые вызваны индуктивным компонентом, таким как двигатель. Когда ток через индуктор внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, размещенный на индуктивной нагрузке, даст этому сигналу отрицательного напряжения безопасный путь к разряду, фактически повторяясь снова и снова через индуктор и диод, пока он в конечном итоге не погаснет.
Это всего лишь несколько применений этого удивительного маленького полупроводникового компонента.
Приобретение диодов
Теперь, когда ваши текущие текут в правильном направлении, пришло время применить ваши новые знания с пользой. Если вы ищете отправную точку или просто запасаетесь, у нас есть набор изобретателя, а также отдельные диоды на выбор.
Наши рекомендации:
Диод слабого сигнала - 1N4148
В наличии COM-08588
Избранное Любимый 10
Список желаний
Диодный выпрямитель - 1А, 50В (1N4001)
В наличии COM-08589
1
Избранное Любимый 13
Список желаний
Диод Шоттки
В наличии COM-10926
1
Избранное Любимый 12
Список желаний
Набор изобретателя SparkFun — версия 3.