Виды закалки
Закалка стали - температура, скорость и режимы закалки, свойства и структура закаленной стали
Закалка стали – термическая обработка, включающая в себя нагрев, выдержку и охлаждение. Процесс направлен на улучшение механических характеристик стали, металлов и сплавов.
Закалка – вид термической обработки, состоящий из основных операций – нагрева до определенной температуры, выдержки, быстрого охлаждения. Он применяется в сочетании с другой разновидностью термообработки – отпуском. Эта технология позволяет улучшить механические характеристики недорогих марок стали, цветных металлов и сплавов, за счет чего снижается себестоимость получаемых изделий и конструкций.
Общие сведения о технологии закалки стали
Основные цели, решаемые комплексом закалка + отпуск:
- повышение твердости;
- повышение прочностных характеристик;
- снижение пластичности до допустимой величины;
- возможность использования пустотелых изделий вместо полнотелых, что позволяет снизить массу металлоизделия и металлоемкость производственного процесса.
Основные этапы закалки:
- нагрев до температур, при которых осуществляется изменение структурного состояния металла;
- выдержка, установленная в технологической карте;
- охлаждение со скоростью, обеспечивающей формирование заданной кристаллической структуры.
После закалки проводят отпуск, который заключается в нагреве металла до температур, лежащих ниже линии фазовых превращений, с дальнейшим медленным понижением температуры. На результат термообработки влияют:
- температура нагрева;
- скорость роста температуры;
- период выдержки при закалочных температурах;
- охлаждающая среда и скорость снижения температуры.
Ключевым параметром является температура нагрева, от которой зависит перестройка и формирование новой структурной решетки. По глубине действия закалку разделяют на объемную и поверхностную. В машиностроении обычно используется объемная закалка, после которой твердость поверхности и сердцевины отличается незначительно. Поверхностная термообработка востребована для деталей, для которых важна высокая твердость поверхности и вязкая сердцевина.
Какие стали подвергают закалке
Не все марки сталей могут подвергаться закалке. Марки с содержанием углерода ниже 0,4% практически не изменяют твердость при закалочных температурах, поэтому этот способ для них не применяется. Закалочную технологию чаще всего применяют для инструментальных сталей.
Таблица правильных режимов закалки и отпуска для некоторых типов инструментальных сталей
Марка стали | Температура закалки стали | Среда охлаждения после закалочного нагрева | Температура отпуска | Среда охлаждения после отпуска |
У7 | 800°C | вода | 170°C | вода, масло |
У7А | 800°C | вода | 170°C | вода, масло |
У8, У8А | 800°C | вода | 170°C | вода, масло |
У10, У10А | 790°C | вода | 180°C | вода, масло |
У11, У12 | 780°C | вода | 180°C | вода, масло |
Р9 | 1250°C | масло | 580°C | воздух в печи |
Р18 | 1250°C | масло | 580°C | воздух в печи |
ШХ6 | 810°C | масло | 200°C | воздух |
ШХ15 | 845°C | масло | 400°C | воздух |
9ХС | 860°C | масло | 170°C | воздух |
Виды закалки – с полиморфным превращением и без него
Закалка сталей протекает с полиморфным превращением, цветных металлов и сплавов – без них.
Закалка сталей с полиморфным превращениемВ углеродистых сталях при повышении температур выше определенного уровня происходит ряд фазовых превращений, вызывающих изменения кристаллической решетки. При критических температурах, значение которых зависит от процентного содержания углерода, происходит распад карбида железа и образование раствора углерода в железе, называемого аустенитом. При медленном остывании аустенит постепенно распадается, и кристаллическая решетка приобретает исходное состояние. Если углеродистые стали охлаждать с высокой скоростью, то в зависимости от режима закалки в них образуются различные фазовые состояния, самый прочный из них – мартенсит.
Для получения мартенситной структуры доэвтектоидные стали(до 0,8% C) нагревают до температур, лежащих выше точки Ас3 на 30-50°C, для заэвтектоидных – на 30-50° выше Ас1.По такой технологии закаливают металлорежущий инструмент и упрочняют изделия, которые в процессе эксплуатации подвергаются трению: шестерни, валы, обоймы, втулки. При нагреве до более низких температур в структуре доэвтектоидных сталей наряду с мартенситом сохраняется более мягкий феррит, снижающий твердость металла и ухудшающий его механические характеристики после отпуска. Такая закалка стали называется неполной и в большинстве случаев является браком. Но она может использоваться в некоторых случаях во избежание появления трещин.
Закалка без полиморфного превращенияЗакалка без полиморфного превращения протекает в цветных металлах и сплавах, имеющих ограниченную растворимость вторичных фаз при обычных температурах, в которых при высоких температурах не происходят полиморфные превращения. При повышении температур выше линии солидус (это линия, ниже которой находится только твердая фаза) вторичные фазы полностью растворяются. При быстром охлаждении вторичные фазы не выделяются, поскольку для этого необходимо определенное время. После такой термообработки цветной сплав является термодинамически неустойчивым, поэтому со временем он начинает распадаться с постепенным выделением вторичной фазы. Такой процесс распада, происходящий в естественных условиях, называется естественным старением, а при нагреве – искусственным старением. В результате старения получают равновесную структуру. Характеристики материала зависят от выбранного режима процесса.
Закалка цветных металлов и сплавов, в отличие от углеродистых сталей, часто не приводит к повышению прочности. Сплавы на основе меди, например, после такой ТО часто становятся более пластичными. Для таких материалов обычно используют отпуск, благодаря которому снимаются напряжения после литья, прокатки, штамповки, ковки или прессования.
Способы закалки стали
Способ закалки выбирают в зависимости от химического состава стали и запланированных свойств.
Закаливание с охлаждением в одной средеСкорость охлаждения стали после закалки зависит от среды, в которой оно проводится. Самую высокую скорость обеспечивает охлаждение в воде. Такой способ используется для среднеуглеродистых низколегированных сталей и некоторых марок коррозионностойких сталей. При содержании углерода более 0,5% C и высоком легировании воду в качестве охлаждающей среды не применяют, поскольку такие сплавы покрываются трещинами или полностью разрушаются.
Прерывистая закалка в двух охлаждающих средахСтупенчатую закалку применяют для деталей, изготовленных из сложнолегированных сталей. Крупногабаритные детали после нагрева на несколько минут окунают в воду, а затем охлаждают в масле до +320…300°C, после чего оставляют на воздухе. При охлаждении в масле до комнатных температур твердость изделия значительно снижается.
Изотермическая ТОЗакалка высокоуглеродистых марок – сложный процесс, состоящий из нормализации с последующим нагревом до температуры закалки. Нагретые детали опускают в ванну с селитрой, нагретой до температур +320…+350°C, выдерживают.
Светлая ТОТакая термообработка применяется для высоколегированных сталей и заключается в их нагреве в среде инертных газов или в вакууме, что обеспечивает светлую поверхность металла. Светлая закалка используется в серийном производстве типовых изделий.
Термообработка с самоотпускомПри высокой скорости охлаждения внутри детали остается тепло, которое при постепенном выходе снимает напряжения внутренней структуры. Этот процесс можно доверить только специалистам, которые могут точно рассчитать время нахождения изделия в охлаждающей среде.
СтруйнаяОхлаждение осуществляют интенсивной струей воды. Такой процесс применяется при необходимости закаливания отдельных частей изделий.
Оборудование для проведения закалки
Оборудование разделяется на две основные группы – установки для нагрева и ванны для охлаждения. На современных предприятиях для получения закалочных температур используются:
- муфельные термические печи;
- оборудование для индукционного нагрева;
- установки для нагрева в расплавах;
- аппараты лазерного нагрева;
- газоплазменные устройства.
Первые три типа установок востребованы для осуществления объемной закалки, три последние – для поверхностного процесса.
Закалочное оборудование – это стальные емкости, графитовые тигли, печи, в которых содержатся расплавленные металлы или соли. Закалочные ванны для жидких сред оборудованы системами обогрева и охлаждения. В их конструкции могут быть предусмотрены специальные мешалки для перемешивания жидких сред и устранения паровой рубашки.
Охлаждающие среды
Условия охлаждения стали после закалки выбирают в зависимости от химического состава обрабатываемого металла и требуемых характеристик конечного продукта. Это могут быть:
- вода;
- воздушная или струя или струя инертного газа;
- минмасло;
- водополимерные смеси;
- расплавленные соли – бария, натрия, калия;
- металлические расплавы – свинцовые или оловянные.
Технология закалочного процесса
Нагрев и выдержкаТемпература нагрева стали при закалке зависит от ее химического состава. В общем случае наблюдается закономерность – чем меньше процентное содержание углерода, тем выше должна быть температура нагрева. Понижение температуры нагрева приводит к тому, что нужная структура не успевает сформироваться. Последствия перегрева:
- обезуглероживание;
- окисление поверхности;
- увеличение внутреннего напряжения;
- изменение структурных составляющих.
Изделия сложных форм предварительно подогревают. Для этого их два-три раза опускают на несколько минут в соляные ванны или держат короткое время в печах, нагретых до температур +400…500°C. Период выдержки определяется габаритами изделия и их количеством в печи. Все части изделия должны прогреваться равномерно.
Таблица температур закалки различных марок стали
Марка | Температура, °C | Марка | Температура, °C |
15Г | 800 | 50Г2 | 805 |
65Г | 815 | 40ХГ | 870 |
15Х, 20Х | 800 | 3Х13 | 1050 |
30Х, 35Х | 850 | 35ХГС | 870 |
40Х, 45Х | 840 | 30ХГСА | 900 |
50Х | 830 |
Температуру нагрева измеряют с помощью пирометров – контактных и бесконтактных, инфракрасных приборов.
ОхлаждениеДля охлаждения используется вода – чистая или с растворенными в ней солями, щелочные растворы. Для легированных сталей используется обдув или охлаждение в минмаслах. В изотермических и ступенчатых процессах для охлаждения используются расплавы солей, щелочей и металлов. Такие среды могут чередоваться между собой.
ОтпускВ зависимости от необходимой температуры отпуск осуществляется в масляных, щелочных или селитровых ваннах, печах с принудительной циркуляцией воздушных потоков, горячем песке.
Низкий отпуск, проводимый при +150…+200°C,служит для устранения внутренних напряжений, некоторого повышения пластичности и вязкости без существенного ухудшения твердости. Низкий отпуск востребован для измерительного и металлообрабатывающего инструмента, других деталей, которые должны сочетать твердость и устойчивость к износу.
Для быстрорежущих сталей отпуск осуществляют при температурах +550…580°C. Такую процедуру называют вторичным отвердением, поскольку она приводит к дополнительному росту твердости.
Возможные дефекты после закалки
Нагрев, выдержку, охлаждение и отпуск стали осуществляют в соответствии с технологическими картами, разработанными специалистами. Нарушение разработанного и утвержденного техпроцесса и/или неоднородность структуры заготовки могут стать причиной появления различных дефектов. Среди них:
- Неравномерный нагрев и/или охлаждение. Приводят к деформациям и образованию трещин, неоднородному составу и неоднородным механическим характеристикам.
- Пережог. Возникает из-за проникновения кислородных молекул в металлическую поверхность. В результате образуются оксиды, изменяющие рабочие характеристики поверхностного слоя. Этот дефект возникает из-за выгорания из стали углерода, вызванного избыточным количеством кислорода в печи.
- Попадание в масляную охлаждающую ванну воды. Это нарушение техпроцесса приводит к появлению трещин на изделии.
Все перечисленные выше дефекты являются неисправимыми.
Другие статьи:
Виды и марки стали
Отпуск стали
Состав и свойства стали
Виды закалки металла
По способу охлаждения различают следующие виды закалки.
Закалка в одной среде
Такая закалка проще по выполнению, но не для любой стали и не для любых изделий ее можно применять.
Быстрое охлаждение в большом интервале температур изделий переменного сечения способствует возникновению температурной неравномерности и больших внутренних напряжений, называемых термическими.
Помимо термических напряжений, при превращении аустенита в мартенсит создаются дополнительно так называемые структурные напряжения, связанные с тем, что превращение аустенита в мартенсит происходит с увеличением объема.
Если деталь сложной формы или переменного сечения, то увеличение объема проходит неравномерно и вызывает возникновение внутренних напряжений.
Наличие больших напряжений может вызвать коробление изделия, поводку, а иногда и растрескивание, если величина внутренних напряжений превзойдет предел прочности.
Чем больше углерода, тем больше объемные изменения и структурные напряжения, тем больше опасность возникновения трещин.
Сталь с содержанием углерода более 0,8% закаливают в одной среде, если изделия простой формы (шарики, ролики и т.д.). В противном случае предпочитают закалку либо в двух средах, либо по способу ступенчатой закалки.
Закалка в двух средах
Этот способ нашел широкое применение для закалки инструмента из высокоуглеродистой стали.
Состоит он в следующем:
деталь вначале замачивают в воде и охлаждают до температур 500—550°,
затем быстро переносят в масло, где оставляют до полного охлаждения.
Ступенчатая закалка
При этом способе деталь быстро охлаждается погружением в соляную ванну с температурой 300—250°. Выдержка при этой температуре в течение 1,5—2 мин. должна обеспечить выравнивание температур по всему сечению изделия, устраняя тем самым термические внутренние напряжения. Последующее охлаждение производят на воздухе.
В качестве охлаждающей среды используют расплавленные соли, селитры, легкоплавкие металлы.
Ступенчатая закалка уменьшает внутренние напряжения, коробление и возможность растрескивания деталей.
Недостатки ступенчатой закалки
Недостаток этого вида закалки в том, что охлаждение в горячих средах не может обеспечить большую скорость охлаждения в интервале 400—600°.
В связи с этим ступенчатую закалку для углеродистой стали можно применять для изделий небольшого сечения (диаметр до 10 мм, например, сверла).
Для легированных сталей, имеющих небольшие значения критической скорости закалки, ступенчатая закалка применима к изделиям большего сечения.
Закалка с подстуживанием
При таком способе деталь вынимают из печи и перед погружением в охлаждающую жидкость некоторое время выдерживают на воздухе. Время выдержки на воздухе должно быть таким, чтобы не произошел
распад на структуру перлита или сорбита. Это время определяется практикой закалки.
Подстуживание уменьшает внутренние напряжения и коробление и применяется для тонких и длинных деталей.
Поверхностная закалка стали
От некоторых деталей в эксплуатации требуется высокая поверхностная твердость при сохранении достаточно вязкой сердцевины, например зуб шестерни, шейка коленчатого вала и др.
В этом случае сталь сознательно закаливают на небольшую глубину. Существует несколько методов поверхностной закалки стали.
Поверхностная закалка при нагреве ацетилено-кислородным пламенем
Нагрев изделия производится ацетилено-кислородным пламенем. Пламенная горелка (рис. 67), движущаяся вдоль изделия с определенной скоростью, нагревает его поверхность.
Вслед за горелкой с той же скоростью движется трубка, подающая воду, с помощью которой производится охлаждение изделия.
Глубина прогрева и температура нагрева регулируются скоростью перемещения горелки и расстоянием горелки от изделия.
Поверхностная закалка токами высокой частоты
Нагрев изделий токами высокой частоты вызывает разогрев поверхностного слоя изделия.
Это объясняется тем, что токи высокой частоты распространяются с неравномерной плотностью по сечению. Чем больше частота тока, тем на меньшую глубину изделия токи проникают.
Благодаря этому возникает большая плотность тока у поверхности изделия, вызывающая весьма быстрый разогрев поверхностных слоев металла.
Этот метод имеет ряд преимуществ: высокую производительность, достаточную легкость регулирования глубины закаленного слоя, получение большей твердости, чем при обычных методах закалки, отсутствие окалины и коробления.
Применяемый для этой цели электрический ток получают от специальных генераторов, дающих переменный ток с частотой до 10 млн. гц (т.е. перемен направления тока в секунду). Ток городской сети имеет частоту 50 гц.
Нагрев изделия осуществляется индуктором, по которому проходят токи высокой частоты и большой силы.
Индуктор наводит (индуктирует) токи в изделии, помещенном внутри него (рис. 68).
Индуктор изготовляют из полых медных трубок, внутри которых циркулирует охлаждающая вода, поэтому он сам не разогревается за тот короткий промежуток времени, за который деталь успевает нагреться до необходимой температуры.
Форма индуктора должна точно повторить форму изделия, только тогда изделие закалится да одну и ту же глубину по всему сечению. Затруднения бывают при сложной форме детали, что ограничивает применение этого метода.
Охлаждение нагретой детали осуществляется чаще всего либо дополнительным дождевым устройством, либо водой, циркулирующей внутри индуктора.
В связи с тем что новый тип детали требует изготовления нового индуктора, этот метод целесообразно применять при наличии однотипных деталей в массовом или крупносерийном производстве.
§
Типы процессов закалки металлов
Обновлено 26 ноября 2018 г.
Автор: Rachelle Dragani
Металл известен тем, что является прочным веществом, способным выдержать большой износ, но, возможно, он изначально не был таким. Многие типы металлов прошли процесс закалки, чтобы сделать их более подходящими для работы, которую они должны выполнять. Существуют различные типы закалки, которые посредством сложных процессов нагрева и охлаждения помогают сделать металлы прочными, долговечными и удобными в работе.
TL;DR (слишком длинное; не читал)
Каждый процесс закалки металла включает три основных этапа: нагрев, замачивание и охлаждение металла. Некоторые распространенные типы упрочнения включают деформационное упрочнение, упрочнение на твердый раствор, дисперсионное упрочнение, а также закалку и отпуск.
Разогреть
Хотя инженеры и рабочие-металлисты придумали несколько различных типов закалки в зависимости от типа металла и результатов, которые они хотят получить, каждый тип включает три основных этапа: нагрев металла, его замачивание. а затем его охлаждение.
На первом этапе термообработки рабочие по металлу нагревают материал, часто при очень высоких температурах. Иногда они делают это, чтобы изменить физический или химический состав металла, часто для того, чтобы с ним было легче манипулировать и работать с ним. Например, когда некоторые металлы подвергаются воздействию температур выше 1000 градусов по Фаренгейту, их внутренняя структура изменяется. Это может быть временным, чтобы рабочие по металлу могли изменить его форму, а затем вернуть его в исходное состояние. В других металлах изменение является постоянным. Иногда эта внутренняя структура становится прочнее и жестче, что делает ее лучшим материалом для использования в чем-то, что требует прочности, например, при строительстве небоскреба. В других случаях термическая обработка используется для повышения пластичности металла. Металлы с высоким уровнем пластичности способны выдерживать силы, тянущие их с любого конца. Это важное качество для таких металлов, как медь, которую нужно вытягивать в тонкие полоски медной проволоки, или золото, которое часто вытягивают в тонкие нити для изготовления украшений.
Замачивание и охлаждение
Второй частью процесса является замачивание металла. Хотя слово «замачивание» может натолкнуть вас на мысль о том, как вы отмачиваете собаку в ванне после пробежки по грязному заднему двору, замачивание в процессе закалки металла немного отличается. Металл не замачивают в ванне с жидким веществом. Вместо этого замачивание в данном случае относится к обеспечению того, чтобы после того, как металл достиг желаемой температуры в процессе нагрева, он «пропитывался» этим теплом. Сроки различны для всех типов закалки, но в целом рабочий по металлу должен убедиться, что все куски металла достигают нужной температуры в течение определенного периода времени.
Третий и последний этап процесса закалки — охлаждение. После того, как металл был нагрет и пропитан этим теплом, его необходимо охладить. Иногда после этого процесса металлы возвращаются к своей первоначальной химической или физической структуре. В других случаях рабочие по металлу следят за тем, чтобы металлы изменялись навсегда.
Типы закалки металла
Существует несколько различных типов процессов закалки металла, в зависимости от типа металла, с которого начинают работать рабочие, и материала, в который они хотят его превратить.
Одним из наиболее распространенных является мартенситное превращение, также известное как закалка и отпуск. Это сложный процесс закалки стали, и рабочие по металлу должны тщательно выполнять каждый шаг. Во-первых, они должны нагреть сталь до экстремальной температуры. Затем кристаллическая структура внутри стали изменяется, позволяя растворить больше углерода. В этот момент металл должен быть закален или охлажден достаточно быстро, чтобы у углерода не было времени на образование других нежелательных материалов в металле. Быстрое охлаждение заставляет его оставаться в закаленном состоянии, что делает его более прочным материалом, лучше приспособленным к износу. Различные состояния, которые он проходит во время процесса, называются аустенитным и мартенситным, а ресурс по аустенитному и мартенситному отпуску может дать вам больше информации об этом процессе.
Другие типы процессов закалки включают поверхностную закалку, отжиг и дисперсионную закалку. Каждый работает по-разному, чтобы сделать металлы более прочными, пластичными, жесткими или ковкими, чтобы помочь инженерам использовать их различными способами. Вокруг вас есть все виды металлов, и, скорее всего, рабочий по металлу использовал процесс закалки, чтобы привести их в состояние, в котором они находятся сегодня.
5 видов термической обработки и их назначение в прецизионной обработке
Существует множество способов изменить поведение металлов и реакцию на прецизионную обработку. Одним из таких методов является термообработка. Термообработка может быть применена к детали до того, как материал станет более поддающимся обработке, или компоненты могут быть обработаны до стадий окончательной закалки и нагрева. Термическая обработка может повлиять на ряд различных аспектов металла, включая прочность, твердость, ударную вязкость, обрабатываемость, формуемость, пластичность и эластичность. Это также может повлиять на физические и механические свойства металла, чтобы изменить использование металла или изменить будущую работу с металлом. Здесь мы более подробно рассмотрим различные типы термообработки и то, как они влияют на детали во время прецизионной обработки.
ЗАКАЛКА
При термообработке для упрочнения металла металл нагревают до температуры, при которой элементы в металле переходят в раствор. Прежде чем сделать это, дефекты в структуре кристаллической решетки металла являются основным источником «податливости» или пластичности. Термическая обработка устраняет эти недостатки, превращая металл в надежный раствор с мелкими частицами для упрочнения металла. Как только металл тщательно нагревается до нужной температуры для получения твердого раствора, его быстро охлаждают, чтобы уловить частицы в растворе.
При дисперсионном твердении в металлический сплав добавляются частицы примесей для дальнейшего увеличения прочности.
НАКЛЕПКА
В процессе цементации внешний слой металла затвердевает, а внутренний металл остается мягким. Для металлов с низким содержанием углерода, таких как железо и сталь, на поверхность необходимо ввести дополнительный углерод. Закалка — это процесс, часто используемый в качестве заключительного шага после того, как деталь уже обработана. Высокая температура используется в сочетании с другими элементами и химическими веществами для получения закаленного внешнего слоя. Поскольку закалка может сделать металлы более хрупкими, поверхностная закалка может быть полезна в тех случаях, когда требуется гибкий металл с прочным износостойким слоем.
ОТЖИГ
Отжиг – это метод термической обработки, при котором металл, такой как алюминий, медь, сталь, серебро или латунь, нагревают до определенной температуры, выдерживают при этой температуре в течение некоторого времени, чтобы произошло преобразование, а затем охлаждают на воздухе . Этот процесс увеличивает пластичность металла и снижает твердость, что делает металл более пригодным для обработки. Медь, серебро и латунь можно охлаждать быстро или медленно, тогда как черные металлы, такие как сталь, всегда должны охлаждаться постепенно, чтобы обеспечить отжиг. Отжиг может использоваться перед механической обработкой металла для повышения его стабильности, что снижает вероятность растрескивания или разрушения более твердых материалов.
НОРМАЛИЗАЦИЯ
Нормализация – это процесс отжига стали, при котором ее нагревают на 150-200°F выше, чем при отжиге, и выдерживают при критической температуре достаточно долго, чтобы произошло превращение. Обработанную таким образом сталь необходимо охлаждать на воздухе. Термическая обработка при нормализации приводит к образованию более мелких аустенитных зерен, а охлаждение на воздухе приводит к более мелким ферритным зернам. Этот процесс улучшает обрабатываемость, пластичность и прочность стали. Стандартизация также полезна для удаления столбчатых зерен и сегрегации дендритов, которые могут возникнуть во время литья детали.
ЗАКАЛ
Закалка – это метод термической обработки, используемый для повышения устойчивости сплавов на основе железа, таких как сталь. Металлы на основе железа очень твердые, но часто слишком хрупкие, чтобы их можно было использовать для большинства целей. Закалку можно использовать для изменения твердости, пластичности и прочности металла, что обычно облегчает его обработку. Металл будет нагреваться до температуры ниже критической точки, так как более низкие температуры уменьшают хрупкость при сохранении твердости. Для повышения пластичности при меньшей твердости и прочности требуются более высокие температуры.
Другой вариант — приобрести закаленный материал или закалить материал перед обработкой. Хотя это усложняет обработку, это устраняет риск изменения размеров детали, в отличие от процесса термообработки после обработки. Это также может устранить необходимость в шлифовальном цехе для получения плотной отделки или допусков.
INVERSE SOLUTIONS, INC.